A306220 a(n) is the smallest prime p such that Kronecker(-n,p) = -1.
3, 5, 2, 3, 2, 13, 3, 5, 7, 3, 2, 5, 2, 11, 7, 3, 5, 5, 2, 11, 2, 3, 5, 13, 3, 11, 2, 3, 2, 7, 3, 5, 5, 3, 2, 7, 2, 5, 7, 3, 13, 5, 2, 7, 2, 3, 5, 5, 3, 7, 2, 3, 2, 13, 3, 11, 5, 3, 2, 7, 2, 5, 5, 3, 7, 19, 2, 5, 2, 3, 7, 5, 3, 7, 2, 3, 2, 5, 3, 11, 7, 3, 2, 13, 2, 7, 5
Offset: 1
Keywords
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
Programs
-
Maple
# This requires Maple 2016 or later f:= proc(n) local p; p:= 2; while NumberTheory:-KroneckerSymbol(-n,p) <> -1 do p:= nextprime(p) od: p end proc: map(f, [$1..100]); # Robert Israel, Feb 17 2019
-
Mathematica
a[n_] := For[p = 2, True, p = NextPrime[p], If[KroneckerSymbol[-n, p] == -1, Return[p]]]; Array[a, 100] (* Jean-François Alcover, Jun 18 2020 *)
-
PARI
a(n) = forprime(p=2, , if(kronecker(-n, p)<0, return(p)))
Formula
a(n) = 2 if and only if n == 3, 5 (mod 8). See A047621.
a(n) = 3 if and only if n == 1, 4, 7, 10, 16, 22 (mod 24).
Comments