cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A306225 Number of ways to write n as w + x^5 + pen(y) + pen(z), where w is 0 or 1, and x,y,z are integers with x >= w and pen(y) < pen(z), and where pen(m) denotes the pentagonal number m*(3*m-1)/2.

Original entry on oeis.org

1, 2, 3, 2, 2, 2, 4, 4, 4, 2, 1, 2, 3, 4, 3, 3, 4, 3, 3, 2, 2, 3, 3, 4, 2, 2, 4, 5, 5, 2, 2, 1, 3, 4, 5, 4, 5, 6, 6, 6, 6, 7, 4, 4, 4, 3, 5, 5, 6, 4, 3, 6, 5, 5, 5, 4, 5, 6, 9, 7, 4, 4, 5, 5, 3, 5, 4, 4, 4, 5, 4, 6, 8, 7, 5, 2, 6, 5, 8, 6, 3, 3, 5, 7, 6, 4, 3, 3, 4, 5, 5, 6, 7, 9, 5, 4, 4, 5, 6, 3
Offset: 1

Views

Author

Zhi-Wei Sun, Jan 30 2019

Keywords

Comments

Conjecture: a(n) > 0 for all n > 0. In other words, any positive integer can be written as the sum of two fifth powers of nonnegative integers one of which is 0 or 1, and two distinct generalized pentagonal numbers.
We have verified a(n) > 0 for all n = 1..2*10^6. The conjecture implies that the set A = {x^5 + pen(y): x = 0,1,2,... and y is an integer} is an additive basis of order two (i.e., the sumset A + A coincides with {0,1,2,...}).
See also A306227 for a similar conjecture.

Examples

			a(11) = 1 with 11 = 1 + 1^5 + pen(-1) + pen(-2).
a(1000) = 1 with 1000 = 0 + 2^5 + pen(8) + pen(-24).
a(5104) = 1 with 5104 = 1 + 3^5 + pen(-3) + pen(57).
a(8196) = 1 with 8196 = 0 + 2^5 + pen(48) + pen(-56).
a(9537) = 1 with 9537 = 1 + 6^5 + pen(17) + pen(30).
a(15049) = 1 with 15049 = 0 + 6^5 + pen(-44) + pen(54).
a(16775) = 1 with 16775 = 1 + 5^5 + pen(-17) + pen(94).
		

Crossrefs

Programs

  • Mathematica
    PenQ[n_]:=PenQ[n]=IntegerQ[Sqrt[24n+1]];
    tab={};Do[r=0;Do[If[PenQ[n-x-y^5-z(3z-1)/2],r=r+1],{x,0,Min[1,(n-1)/2]},{y,x,(n-1-x)^(1/5)},{z,-Floor[(Sqrt[12(n-1-x-y^5)+1]-1)/6],(Sqrt[12(n-1-x-y^5)+1]+1)/6}];tab=Append[tab,r],{n,1,100}];Print[tab]