A306225 Number of ways to write n as w + x^5 + pen(y) + pen(z), where w is 0 or 1, and x,y,z are integers with x >= w and pen(y) < pen(z), and where pen(m) denotes the pentagonal number m*(3*m-1)/2.
1, 2, 3, 2, 2, 2, 4, 4, 4, 2, 1, 2, 3, 4, 3, 3, 4, 3, 3, 2, 2, 3, 3, 4, 2, 2, 4, 5, 5, 2, 2, 1, 3, 4, 5, 4, 5, 6, 6, 6, 6, 7, 4, 4, 4, 3, 5, 5, 6, 4, 3, 6, 5, 5, 5, 4, 5, 6, 9, 7, 4, 4, 5, 5, 3, 5, 4, 4, 4, 5, 4, 6, 8, 7, 5, 2, 6, 5, 8, 6, 3, 3, 5, 7, 6, 4, 3, 3, 4, 5, 5, 6, 7, 9, 5, 4, 4, 5, 6, 3
Offset: 1
Keywords
Examples
a(11) = 1 with 11 = 1 + 1^5 + pen(-1) + pen(-2). a(1000) = 1 with 1000 = 0 + 2^5 + pen(8) + pen(-24). a(5104) = 1 with 5104 = 1 + 3^5 + pen(-3) + pen(57). a(8196) = 1 with 8196 = 0 + 2^5 + pen(48) + pen(-56). a(9537) = 1 with 9537 = 1 + 6^5 + pen(17) + pen(30). a(15049) = 1 with 15049 = 0 + 6^5 + pen(-44) + pen(54). a(16775) = 1 with 16775 = 1 + 5^5 + pen(-17) + pen(94).
Links
- Zhi-Wei Sun, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
PenQ[n_]:=PenQ[n]=IntegerQ[Sqrt[24n+1]]; tab={};Do[r=0;Do[If[PenQ[n-x-y^5-z(3z-1)/2],r=r+1],{x,0,Min[1,(n-1)/2]},{y,x,(n-1-x)^(1/5)},{z,-Floor[(Sqrt[12(n-1-x-y^5)+1]-1)/6],(Sqrt[12(n-1-x-y^5)+1]+1)/6}];tab=Append[tab,r],{n,1,100}];Print[tab]
Comments