cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A306227 Number of ways to write n as w + x^4 + y*(y+1)/2 + z*(z+1)/2, where w is 0 or 1, and x, y, z are nonnegative integers with x >= w and y < z.

Original entry on oeis.org

1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 1, 2, 3, 4, 4, 2, 3, 3, 4, 5, 3, 3, 4, 4, 3, 4, 3, 4, 5, 4, 2, 2, 3, 5, 7, 4, 3, 3, 2, 3, 4, 4, 4, 5, 5, 2, 3, 4, 4, 5, 2, 4, 4, 4, 4, 4, 3, 3, 5, 3, 2, 4, 5, 6, 5, 2, 2, 4, 5, 4, 4, 2, 3, 4, 4, 2, 3, 6, 7, 8, 4, 5, 4, 3, 5, 5, 3, 4, 7, 7, 6, 6, 4, 7, 6, 4, 5
Offset: 1

Views

Author

Zhi-Wei Sun, Jan 30 2019

Keywords

Comments

Conjecture: a(n) > 0 for all n > 0. In other words, any positive integer can be written as the sum of two fourth powers one of which is 0 or 1, and two distinct triangular numbers.
We have verified a(n) > 0 for all n = 1..10^6. The conjecture implies that the set S = {x^4 + y*(y+1)/2: x,y = 0,1,2,...} is an additive basis of order two (i.e., the sumset S + S coincides with {0,1,2,...}).
See also A306225 for a similar conjecture.

Examples

			a(1) = 1 with 1 = 0 + 0^4 + 0*1/2 + 1*2/2.
a(2) = 1 with 2 = 0 + 1^4 + 0*1/2 + 1*2/2.
a(14) = 1 with 14 = 0 + 1^4 + 2*3/2 + 4*5/2.
a(3774) = 1 with 3774 = 1 + 5^4 + 52*53/2 + 59*60/2.
a(7035) = 1 with 7035 = 0 + 3^4 + 48*49/2 + 107*108/2.
		

Crossrefs

Programs

  • Mathematica
    TQ[n_]:=TQ[n]=IntegerQ[Sqrt[8n+1]];
    tab={};Do[r=0;Do[If[TQ[n-x-y^4-z(z+1)/2],r=r+1],{x,0,Min[1,(n-1)/2]},{y,x,(n-1-x)^(1/4)},{z,0,(Sqrt[4(n-1-x-y^4)+1]-1)/2}];tab=Append[tab,r],{n,1,100}];Print[tab]