cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A306231 Lexicographically earliest sequence of distinct positive terms such that for any n > 0 and any k > 0, floor((2^k) / a(n)) AND floor((2^k) / a(n+1)) = 0 (where AND denotes the bitwise AND operator).

This page as a plain text file.
%I A306231 #15 Feb 01 2019 05:04:06
%S A306231 1,2,3,6,4,5,20,8,9,72,16,7,14,21,78,32,11,352,64,10,40,15,24,12,30,
%T A306231 35,390,48,96,51,102,60,13,832,117,144,18,168,42,28,39,180,56,84,63,
%U A306231 70,780,120,26,128,19,504,36,288,126,45,112,151,896,156,720,224
%N A306231 Lexicographically earliest sequence of distinct positive terms such that for any n > 0 and any k > 0, floor((2^k) / a(n)) AND floor((2^k) / a(n+1)) = 0 (where AND denotes the bitwise AND operator).
%C A306231 In other words, for any n > 0, the binary expansions of 1/a(n) and of 1/a(n+1) have no common one bit; in this sense, this sequence is similar to A109812.
%C A306231 This sequence is a permutation of the natural numbers, with inverse A306233 (we can first prove that all the powers of 2 appear in the sequence and then that every natural number appear in the sequence).
%H A306231 Rémy Sigrist, <a href="/A306231/b306231.txt">Table of n, a(n) for n = 1..2000</a>
%H A306231 Rémy Sigrist, <a href="/A306231/a306231.gp.txt">PARI program for A306231</a>
%H A306231 <a href="/index/Per#IntegerPermutation">Index entries for sequences that are permutations of the natural numbers</a>
%F A306231 For any n > 0, if A000120(a(n)) <> 1 and A000120(a(n+1)) <> 1, then gcd(A007733(a(n)), A007733(a(n+1))) > 1.
%e A306231 The first terms, alongside A007733(a(n)) and the binary representation of 1/a(n) with periodic part in parentheses, are:
%e A306231   n   a(n)  period  bin(1/a(n))
%e A306231   --  ----  ------  -------------------
%e A306231    1     1       1  1.(0)
%e A306231    2     2       1  0.1(0)
%e A306231    3     3       2  0.(01)
%e A306231    4     6       2  0.0(01)
%e A306231    5     4       1  0.01(0)
%e A306231    6     5       4  0.(0011)
%e A306231    7    20       4  0.00(0011)
%e A306231    8     8       1  0.001(0)
%e A306231    9     9       6  0.(000111)
%e A306231   10    72       6  0.000(000111)
%e A306231   11    16       1  0.0001(0)
%e A306231   12     7       3  0.(001)
%e A306231   13    14       3  0.0(001)
%e A306231   14    21       6  0.(000011)
%e A306231   15    78      12  0.0(000001101001)
%e A306231   16    32       1  0.00001(0)
%e A306231   17    11      10  0.(0001011101)
%e A306231   18   352      10  0.00000(0001011101)
%e A306231   19    64       1  0.000001(0)
%e A306231   20    10       4  0.0(0011)
%o A306231 (PARI) See Links section.
%Y A306231 Cf. A000120, A007733, A109812, A306233 (inverse).
%K A306231 nonn,base
%O A306231 1,2
%A A306231 _Rémy Sigrist_, Jan 30 2019