This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A306246 #18 Jun 28 2019 21:15:57 %S A306246 1,2,2,3,3,3,5,4,2,4,5,4,5,6,4,5,8,5,6,7,3,5,10,7,3,7,8,5,9,8,4,8,9,6, %T A306246 5,11,9,4,9,10,6,6,9,10,8,8,11,8,9,13,7,5,13,11,5,13,13,7,9,12,8,9,16, %U A306246 9,10,13,9,15,11,5,15,13,8,15,12,5,14,13,8 %N A306246 a(1) = 1, a(2) = 2, and for any n > 2, a(n) = o(n-1) + o(n-2) where o(k) is the number of occurrences of a(k) among a(1), ..., a(k). %C A306246 The sequence o corresponds to the ordinal transform of the sequence a. %C A306246 This sequence has a taste of Fibonacci, as each pair of consecutive terms gives rise to the next term. %C A306246 This sequence is unbounded: %C A306246 - if the sequence was bounded, say a(n) <= M for any n > 0, then some value in the range 1..M, say t, would appear at least M times among the first M^2 terms, and we would have a value > M after the M-th occurrence of t, a contradiction. %C A306246 This sequence has interesting graphical features (see Links section). %H A306246 Rémy Sigrist, <a href="/A306246/b306246.txt">Table of n, a(n) for n = 1..10000</a> %H A306246 Rémy Sigrist, <a href="/A306246/a306246.png">Density plot of the first 10000000 terms</a> %e A306246 The first terms, alongside o, are: %e A306246 n a(n) o(n) %e A306246 -- ---- ---- %e A306246 1 1 1 %e A306246 2 2 1 %e A306246 3 2 2 %e A306246 4 3 1 %e A306246 5 3 2 %e A306246 6 3 3 %e A306246 7 5 1 %e A306246 8 4 1 %e A306246 9 2 3 %e A306246 10 4 2 %e A306246 11 5 2 %e A306246 12 4 3 %e A306246 13 5 3 %e A306246 14 6 1 %e A306246 15 4 4 %e A306246 16 5 4 %e A306246 17 8 1 %e A306246 18 5 5 %e A306246 19 6 2 %e A306246 20 7 1 %o A306246 (PARI) o = vector(18); for (n=1, 79, if (n<=2, v=n, v=pp+p); print1 (v ", "); [pp,p]=[p,o[1+v]++]) %Y A306246 See A306251 for the ordinal transform of this sequence. %K A306246 nonn %O A306246 1,2 %A A306246 _Rémy Sigrist_, Jan 31 2019