cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A306249 Number of ways to write n as x*(2x-1) + y*(3y-1) + z*(4z-1) + w*(5w-1), where x,y,z are nonnegative integers and w is 0 or 1.

Original entry on oeis.org

1, 1, 1, 2, 2, 2, 3, 2, 2, 2, 3, 2, 1, 2, 3, 4, 2, 3, 3, 3, 4, 2, 2, 1, 4, 3, 1, 1, 5, 4, 3, 3, 3, 4, 4, 3, 1, 3, 3, 5, 1, 2, 4, 5, 4, 4, 2, 3, 7, 3, 3, 2, 5, 3, 3, 2, 2, 3, 4, 5, 1, 4, 6, 6, 2, 3, 5, 3, 3, 3, 5, 4, 5, 5, 3, 6, 6, 4, 3, 4, 5, 2, 3, 4, 4, 5, 2, 2, 5, 6, 6, 1, 5, 3, 6, 2, 4, 3, 4, 4, 2
Offset: 0

Views

Author

Zhi-Wei Sun, Jan 31 2019

Keywords

Comments

Conjecture: a(n) > 0 for any nonnegative integer n.
This has been verified for n up to 10^6. By Theorem 1.2 of the linked 2017 paper of the author, any nonnegative integer can be written as x*(2x-1) + y*(3y-1) + z*(4z-1) with x,y,z integers.
We have some other similar conjectures. For example, we conjecture that each n = 0,1,2,... can be written as x*(3x-1)/2 + y*(5y-1)/2 + z*(7z-1)/2 + w*(9w-1)/2) (or x*(x-1) + y*(2y-1) + z*(3z-1) + w*(4w-1)) with x,y,z,w nonnegative integers.

Examples

			a(1) = 1 with 1 = 1*(2*1-1) + 0*(3*0-1) + 0*(4*0-1) + 0*(5*0-1).
a(2) = 1 with 2 = 0*(2*0-1) + 1*(3*1-1) + 0*(4*0-1) + 0*(5*0-1).
a(12) = 1 with 12 = 2*(2*2-1) + 1*(3*1-1) + 0*(4*0-1) + 1*(5*1-1).
a(26) = 1 with 26 = 2*(2*2-1) + 1*(3*1-1) + 2*(4*2-1) + 1*(5*1-1).
a(220) = 1 with 220 = 6*(2*6-1) + 7*(3*7-1) + 2*(4*2-1) + 0*(5*0-1).
a(561) = 1 with 561 = 17*(2*17-1) + 0*(3*0-1) + 0*(4*0-1) + 0*(5*0-1).
a(1356) = 1 with 1356 = 23*(2*23-1) + 1*(3*1-1) + 9*(4*9-1) + 1*(5*1-1).
		

Crossrefs

Programs

  • Mathematica
    HexQ[n_]:=HexQ[n]=IntegerQ[Sqrt[8n+1]]&&(n==0||Mod[Sqrt[8n+1]+1,4]==0);
    tab={};Do[r=0;Do[If[HexQ[n-x(5x-1)-y(4y-1)-z(3z-1)],r=r+1],{x,0,Min[1,(Sqrt[20n+1]+1)/10]},{y,0,(Sqrt[16(n-x(5x-1))+1]+1)/8},{z,0,(Sqrt[12(n-x(5x-1)-y(4y-1))+1]+1)/6}];tab=Append[tab,r],{n,0,100}];Print[tab]