cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A306254 Denominators of the rational factor of Kaplan's series for the Dottie number.

This page as a plain text file.
%I A306254 #17 May 27 2025 07:29:37
%S A306254 4,768,61440,165150720,47563407360,669692775628800,417888291992371200,
%T A306254 2808209322188734464000,3055331742541343096832000,
%U A306254 33437550590372458851729408000,56175084991825730870905405440000,7276695809501137874093602599075840000,17464069942802730897824646237782016000000
%N A306254 Denominators of the rational factor of Kaplan's series for the Dottie number.
%C A306254 These are the denominators of the unique sequence of rational numbers r_n such that d = Sum_{n>=0} r_n*Pi^(2*n+1) (where d is the Dottie number A003957). The numerators are in A302977.
%H A306254 Amiram Eldar, <a href="/A306254/b306254.txt">Table of n, a(n) for n = 0..100</a>
%H A306254 Ozaner Hansha, <a href="https://ozanerhansha.github.io/dottie-number">The Dottie Number</a>.
%H A306254 Ozaner Hansha, <a href="https://ozanerhansha.github.io/dottie-number/#kaplans-series">Kaplan's series</a>.
%H A306254 Samuel R. Kaplan, <a href="https://doi.org/10.1080/0025570X.2007.11953455">The Dottie Number</a>, Mathematics Magazine, Vol. 80, No. 1 (2007), pp. 73-74, <a href="https://web.archive.org/web/20201112024420/https://www.maa.org/sites/default/files/Kaplan2007-131105.pdf">alternative link</a>.
%e A306254 The Kaplan series begins with d = Pi/4 - Pi^3/768 - Pi^5/61440 - 43*Pi^7/165150720 - ...
%t A306254 f[x_] := x - Cos[x]; g[x_] := InverseFunction[f][x]; s = {}; Do[AppendTo[s, Denominator[(-1/2)^n * 1/n! * Derivative[n][g][Pi/2]]], {n, 1, 30, 2}]; s
%Y A306254 Cf. A003957, A177413, A182503, A200309, A212112, A212113, A302977.
%K A306254 nonn,frac
%O A306254 0,1
%A A306254 _Amiram Eldar_, Feb 01 2019