cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A306260 Number of ways to write n as w*(4w+1) + x*(4x-1) + y*(4y-2) + z*(4z-3) with w,x,y,z nonnegative integers.

This page as a plain text file.
%I A306260 #13 Feb 01 2019 08:52:08
%S A306260 1,1,1,2,1,2,2,1,2,1,2,1,2,2,1,4,2,3,3,2,4,4,3,1,2,1,2,3,1,2,5,5,4,5,
%T A306260 5,4,3,1,2,4,4,4,4,5,5,7,2,2,5,3,4,5,5,3,7,4,2,5,2,4,7,6,6,6,5,6,5,3,
%U A306260 5,6,5,8,9,8,4,7,2,4,9,2,6,5,8,6,7,7,2,6,4,4,12,6,5,5,7,9,8,5,6,9,8
%N A306260 Number of ways to write n as w*(4w+1) + x*(4x-1) + y*(4y-2) + z*(4z-3) with w,x,y,z nonnegative integers.
%C A306260 Conjecture 1: a(n) > 0 for all n >= 0, and a(n) = 1 only for n = 0, 1, 2, 4, 7, 9, 11, 14, 23, 25, 28, 37.
%C A306260 Conjecture 2: Each n = 0,1,2,... can be written as w*(4w+2) + x*(4x-1) + y*(4y-2) + z*(4z-3) with w,x,y,z nonnegative integers.
%C A306260 Conjecture 3: Each n = 0,1,2,... can be written as 4*w^2 + x*(4x+1) + y*(4y-2) + z*(4z-3) with w,x,y,z nonnegative integers.
%C A306260 We have verified that a(n) > 0 for all n = 0..2*10^6. By Theorem 1.3 in the linked 2017 paper of the author, any nonnegative integer can be written as x*(4x-1) + y*(4y-2) + z*(4z-3) with x,y,z integers.
%H A306260 Zhi-Wei Sun, <a href="/A306260/b306260.txt">Table of n, a(n) for n = 0..10000</a>
%H A306260 Zhi-Wei Sun, <a href="http://dx.doi.org/10.1016/j.jnt.2015.10.014">A result similar to Lagrange's theorem</a>, J. Number Theory 162(2016), 190-211.
%H A306260 Zhi-Wei Sun, <a href="http://dx.doi.org/10.1016/j.jnt.2016.07.024">On x(ax+1)+y(by+1)+z(cz+1) and x(ax+b)+y(ay+c)+z(az+d)</a>, J. Number Theory 171(2017), 275-283.
%e A306260 a(11) = 1 with 11 = 1*(4*1+1) + 1*(4*1-1) + 1*(4*1-2) + 1*(4*1-3).
%e A306260 a(23) = 1 with 23 = 2*(4*2+1) + 1*(4*1-1) + 1*(4*1-2) + 0*(4*0-3).
%e A306260 a(25) = 1 with 25 = 0*(4*0+1) + 1*(4*1-1) + 2*(4*2-2) + 2*(4*2-3).
%e A306260 a(28) = 1 with 28 = 2*(4*2+1) + 0*(4*0-1) + 0*(4*0-2) + 2*(4*2-3).
%e A306260 a(37) = 1 with 37 = 1*(4*1+1) + 1*(4*1-1) + 1*(4*1-2) + 3*(4*3-3).
%t A306260 QQ[n_]:=QQ[n]=IntegerQ[Sqrt[16n+1]]&&Mod[Sqrt[16n+1],8]==1;
%t A306260 tab={};Do[r=0;Do[If[QQ[n-x(4x-1)-y(4y-2)-z(4z-3)],r=r+1],{x,0,(Sqrt[16n+1]+1)/8},{y,0,(Sqrt[4(n-x(4x-1))+1]+1)/4},{z,0,(Sqrt[16(n-x(4x-1)-y(4y-2))+9]+3)/8}];tab=Append[tab,r],{n,0,100}];Print[tab]
%Y A306260 Cf. A001107, A002939, A007742, A033991, A255350, A306225, A306227, A306239, A306240, A306249, A306250.
%K A306260 nonn
%O A306260 0,4
%A A306260 _Zhi-Wei Sun_, Feb 01 2019