cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A306261 Least k > 0 such that 2n - p is prime where p is some prime divisor of 4n^2 - (2k-1)^2 for n >= 4.

Original entry on oeis.org

1, 1, 2, 1, 1, 2, 1, 1, 1, 1, 2, 2, 1, 1, 1, 2, 1, 2, 1, 1, 1, 1, 2, 1, 1, 2, 2, 1, 1, 1, 3, 1, 2, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 3, 2, 1, 2, 1, 1, 2, 1, 1, 1, 1, 1, 1, 3, 1, 2, 3, 1, 1, 1, 1, 3, 1, 1, 1, 1, 3, 4, 1, 1, 1, 2, 1, 1, 2, 1, 2, 1, 2, 1, 1, 2, 3, 1, 1, 1, 1, 2, 2, 1, 1, 2, 1
Offset: 4

Views

Author

Juri-Stepan Gerasimov, Feb 01 2019

Keywords

Comments

Conjecture: a(n) exists for n >= 4.
The conjecture holds up to 10^6. Records: a(4) = 1, a(6) = 2, a(34) = 3, a(75) = 4, a(154) = 9, a(1027) = 10, a(1097) = 11, a(1477) = 14, a(1552) = 17, a(5179) = 18, a(10684) = 29, a(70201) = 32, a(79861) = 43, a(519632) = 45, a(1018804) = 46, a(1713031) = 47, .... - Charles R Greathouse IV, Feb 17 2019

Examples

			a(4) = 1 because 4*4^2 - (2*1-1)^2 = 63 = 3^2*7 and 2*4 - 3 = 5 is prime;
a(5) = 1 because 4*5^2 - (2*1-1)^2 = 99 = 3^2*11 and 2*5 - 3 = 7 is prime;
a(6) = 2 because 4*6^2 - (2*1-1)^2 = 143 = 11*13 and 2*6 - 11 = 1 is not a prime, 2*6 - 13 = -1 is not a prime, but 4*6^2 -(2*2-1)^2 = 135 = 3^3*5 and 2*6 - 5 = 7 is prime.
		

Crossrefs

Programs

  • PARI
    a(n)=for(k=1,2*n,my(f=factor(4*n^2-(2*k-1)^2)[,1]);for(i=1,#f,if(isprime(2*n-f[i]),return(k)))); "does not exist" \\ Charles R Greathouse IV, Feb 17 2019