This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A306269 #16 Feb 02 2019 04:06:33 %S A306269 1,0,1,0,1,1,0,1,1,1,0,1,1,1,1,0,1,2,1,1,1,0,1,2,2,1,1,1,0,1,3,3,2,1, %T A306269 1,1,0,1,3,4,3,2,1,1,1,0,1,5,6,5,3,2,1,1,1,0,1,5,9,7,5,3,2,1,1,1,0,1, %U A306269 7,12,12,8,5,3,2,1,1,1,0,1,8,17,17,13,8,5,3,2,1,1,1 %N A306269 Regular triangle read by rows where T(n,k) is the number of unlabeled balanced rooted semi-identity trees with n >= 1 nodes and depth 0 <= k < n. %C A306269 A rooted tree is a semi-identity tree if the non-leaf branches of the root are all distinct and are themselves semi-identity trees. It is balanced if all leaves are the same distance from the root. %H A306269 Alois P. Heinz, <a href="/A306269/b306269.txt">Rows n = 1..200, flattened</a> %H A306269 Gus Wiseman, <a href="/A306269/a306269.png">Unlabeled balanced rooted semi-identity trees with 12 nodes, organized by depth.</a> %e A306269 Triangle begins: %e A306269 1 %e A306269 0 1 %e A306269 0 1 1 %e A306269 0 1 1 1 %e A306269 0 1 1 1 1 %e A306269 0 1 2 1 1 1 %e A306269 0 1 2 2 1 1 1 %e A306269 0 1 3 3 2 1 1 1 %e A306269 0 1 3 4 3 2 1 1 1 %e A306269 0 1 5 6 5 3 2 1 1 1 %e A306269 0 1 5 9 7 5 3 2 1 1 1 %e A306269 0 1 7 12 12 8 5 3 2 1 1 1 %e A306269 0 1 8 17 17 13 8 5 3 2 1 1 1 %e A306269 0 1 10 25 26 20 14 8 5 3 2 1 1 1 %e A306269 0 1 12 34 39 31 21 14 8 5 3 2 1 1 1 %e A306269 The postpositive terms of row 9 {3, 4, 3, 2} count the following trees: %e A306269 ((ooooooo)) (((oooooo))) ((((ooooo)))) (((((oooo))))) %e A306269 ((o)(ooooo)) (((o)(oooo))) ((((o)(ooo)))) (((((o)(oo))))) %e A306269 ((oo)(oooo)) (((oo)(ooo))) ((((o))((oo)))) %e A306269 (((o))((ooo))) %t A306269 ubk[n_,k_]:=Select[Join@@Table[Select[Union[Sort/@Tuples[ubk[#,k-1]&/@ptn]],UnsameQ@@DeleteCases[#,{}]&],{ptn,IntegerPartitions[n-1]}],SameQ[k,##]&@@Length/@Position[#,{}]&]; %t A306269 Table[Length[ubk[n,k]],{n,1,10},{k,0,n-1}] %Y A306269 Row sums give A306201. %Y A306269 T(2n-1,n) gives A306274. %Y A306269 Cf. A000081, A004111, A048816, A079500, A120803, A184155, A276625, A306200, A306202, A306203, A320222, A320270. %K A306269 nonn,tabl %O A306269 1,18 %A A306269 _Gus Wiseman_, Feb 01 2019