This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A306276 #34 Dec 28 2022 01:56:14 %S A306276 1,1,1,1,3,3,5,7,11,15,23,33,49,71,105,153,225,329,483,707,1037,1519, %T A306276 2227,3263,4783,7009,10273,15055,22065,32337,47393,69457,101795, %U A306276 149187,218645,320439,469627,688271,1008711,1478337,2166609,3175319,4653657,6820265 %N A306276 a(0) = a(1) = a(2) = a(3) = 1; thereafter a(n) = a(n-2) + a(n-3) + a(n-4). %C A306276 The characteristic equation of this sequence is x^4 = x^2 + x + 1. The characteristic equation of A000930 is x^3 = x^2 + 1 [1], which can be rewritten as x^4 = x^3 + x [2]. By substituting the value of x^3 from equation [1] in equation [2], we get x^4 = (x^2 + 1) + x, which is the characteristic equation for this sequence. Hence the ratio a(n+1)/a(n) has the same limit as the A000930 sequence does, about 1.465571231. %H A306276 Michael De Vlieger, <a href="/A306276/b306276.txt">Table of n, a(n) for n = 0..6025</a> %H A306276 Anthony Shannon, François Dubeau, Mine Uysal, and Engin Özkan, <a href="https://doi.org/10.7546/ijba.2022.26.4.000899">A Difference Equation Model of Infectious Disease</a>, Int. J. Bioautomation (2022) Vol. 26, No. 4, 339-352. %F A306276 G.f.: (x^3 - x - 1)/(x^4 + x^3 + x^2 - 1). %F A306276 a(n) = a(n-2) + a(n-3) + a(n-4) for n >= 4, a(n) = 1 for n < 4. %F A306276 Lim_{n->infinity} a(n+1)/a(n) = A092526. %t A306276 Nest[Append[#, Total@ #[[-4 ;; -2]] ] &, {1, 1, 1, 1}, 40] (* or *) %t A306276 CoefficientList[Series[(x^3 - x - 1)/(x^4 + x^3 + x^2 - 1), {x, 0, 43}], x] (* _Michael De Vlieger_, Feb 09 2019 *) %Y A306276 Cf. A000930, A092526. %K A306276 nonn %O A306276 0,5 %A A306276 _Joseph Damico_, Feb 02 2019