This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A306278 #65 Jan 16 2023 18:38:44 %S A306278 2,11,16,25,30,39,44,53,58,67,72,81,86,95,100,109,114,123,128,137,142, %T A306278 151,156,165,170,179,184,193,198,207,212,221,226,235,240,249,254,263, %U A306278 268,277,282,291,296,305,310,319,324,333,338,347,352,361,366,375,380,389,394 %N A306278 Numbers congruent to 2 or 11 mod 14. %H A306278 Colin Barker, <a href="/A306278/b306278.txt">Table of n, a(n) for n = 1..1000</a> %H A306278 <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (1,1,-1). %F A306278 a(n) = 7*n - A010703(n). %F A306278 a(n) = 7*n - 4 + (-1)^n. %F A306278 a(n) = a(n - 1) + a(n - 2) - a(n - 3) for n > 3. %F A306278 A007310(a(n) + 1) = 7*A007310(n) %F A306278 From _Jinyuan Wang_, Feb 03 2019: (Start) %F A306278 For odd number k, a(k) = 7*k - 5. %F A306278 For even number k, a(k) = 7*k - 3. %F A306278 (End) %F A306278 G.f.: x*(2 + 9*x + 3*x^2) / ((1 - x)^2*(1 + x)). - _Colin Barker_, Mar 14 2019 %F A306278 E.g.f.: 3 + (7*x - 4)*exp(x) + exp(-x). - _David Lovler_, Sep 07 2022 %p A306278 seq(seq(14*i+j, j=[2, 11]), i=0..28); %t A306278 Flatten[Table[{14n + 2, 14n + 11}, {n, 0, 28}]] %t A306278 LinearRecurrence[{1,1,-1},{2,11,16},60] (* _Harvey P. Dale_, Jan 16 2023 *) %o A306278 (PARI) for(n=2, 394, if((n%14==2) || (n%14==11), print1(n, ", "))) %o A306278 (PARI) for(n=1,57,print1(7*n-4+(-1)^n,", ")) %o A306278 (PARI) for(n=1,500,if(n%14==2,print1(n,", "));if(n%14==11,print1(n,", "))) \\ _Jinyuan Wang_, Feb 03 2019 %o A306278 (PARI) Vec(x*(2 + 9*x + 3*x^2) / ((1 - x)^2*(1 + x)) + O(x^40)) \\ _Colin Barker_, Mar 14 2019 %o A306278 (PARI) upto(n) = forstep(i = 2, n, [9, 5], print1(i", ")) \\ _David A. Corneth_, Mar 27 2019 %Y A306278 Cf. A007310, A010703, A020639, A047470, A091999, A273669, A306277, A306289. %Y A306278 Primes greater than 2 in this sequence: A045471. %K A306278 nonn,easy %O A306278 1,1 %A A306278 _Davis Smith_, Feb 02 2019