cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A306286 a(n) is the product of the positions of the ones in the binary expansion of n (the most significant bit having position 1).

This page as a plain text file.
%I A306286 #89 Jun 01 2024 14:46:25
%S A306286 1,1,1,2,1,3,2,6,1,4,3,12,2,8,6,24,1,5,4,20,3,15,12,60,2,10,8,40,6,30,
%T A306286 24,120,1,6,5,30,4,24,20,120,3,18,15,90,12,72,60,360,2,12,10,60,8,48,
%U A306286 40,240,6,36,30,180,24,144,120,720,1,7,6,42,5,35,30
%N A306286 a(n) is the product of the positions of the ones in the binary expansion of n (the most significant bit having position 1).
%C A306286 The variant where the least significant bit has position 1 corresponds to A096111 (with an appropriate offset).
%H A306286 Rémy Sigrist, <a href="/A306286/b306286.txt">Table of n, a(n) for n = 0..16384</a>
%F A306286 a(2*n) = a(n).
%F A306286 a(2^k) = 1 for any k >= 0.
%F A306286 a(2^k-1) = k! for any k >= 0.
%F A306286 a(2^k+1) = k+1 for any k >= 0.
%e A306286 The first terms, alongside the positions of ones and the binary representation of n, are:
%e A306286   n   a(n)  Pos. ones  bin(n)
%e A306286   --  ----  ---------  ------
%e A306286    0     1  {}              0
%e A306286    1     1  {1}             1
%e A306286    2     1  {1}            10
%e A306286    3     2  {1,2}          11
%e A306286    4     1  {1}           100
%e A306286    5     3  {1,3}         101
%e A306286    6     2  {1,2}         110
%e A306286    7     6  {1,2,3}       111
%e A306286    8     1  {1}          1000
%e A306286    9     4  {1,4}        1001
%e A306286   10     3  {1,3}        1010
%e A306286   11    12  {1,3,4}      1011
%e A306286   12     2  {1,2}        1100
%e A306286   13     8  {1,2,4}      1101
%e A306286   14     6  {1,2,3}      1110
%e A306286   15    24  {1,2,3,4}    1111
%e A306286   16     1  {1}         10000
%t A306286 A306286[n_] := Times @@ Flatten[Position[IntegerDigits[n, 2], 1]];
%t A306286 Array[A306286, 100, 0] (* _Paolo Xausa_, Jun 01 2024 *)
%o A306286 (PARI) a(n) = my (b=binary(n)); prod(k=1, #b, if (b[k],k,1))
%o A306286 (PARI) a(n) = vecprod(Vec(select(x->(x==1), binary(n), 1))); \\ _Michel Marcus_, Jun 01 2024
%o A306286 (Python)
%o A306286 from math import prod
%o A306286 def a(n): return prod(i for i, bi in enumerate(bin(n)[2:], 1) if bi == "1")
%o A306286 print([a(n) for n in range(71)]) # _Michael S. Branicky_, Jun 01 2024
%Y A306286 Cf. A096111, A306549, A307218 (fixed points).
%K A306286 nonn,base,easy
%O A306286 0,4
%A A306286 _Rémy Sigrist_, May 04 2019