A306287 Irregular triangle T(n,k), 1 <= n, 1 <= k <= (1/6)*(4+5*2^(2*n)), read by rows: T(n,k) determines absolute directions along the perimeter of the n-th Y-type Hilbert Tree.
1, 0, 3, 2, 1, 2, 1, 1, 0, 3, 0, 1, 0, 3, 3, 2, 3, 2, 1, 2, 1, 0, 1, 2, 2, 3, 2, 1, 1, 0, 1, 2, 1, 1, 0, 3, 0, 1, 0, 3, 3, 2, 3, 0, 0, 0, 1, 2, 1, 1, 0, 3, 0, 1, 0, 3, 3, 2, 3, 0, 3, 3, 2, 1, 2, 2, 3, 0, 3, 2, 3, 2, 1, 2, 1, 0, 1, 2, 2, 3, 2, 1, 1, 1, 0
Offset: 1
Examples
T(1,k) = 1, 0, 3, 2; T(2,k) = 1, 2, 1, 1, 0, 3, 0, 1, 0, 3, 3, 2, 3, 2.
Links
- Bradley Klee, Limit-Periodic Construction.
- Bradley Klee, First Six Y-type Trees.
Programs
-
Mathematica
HC = {L[n_ /; EvenQ[n]] :> {F[n], L[n], L[Mod[n + 1, 2]], R[n]}, R[n_ /; OddQ[n]] :> {F[n], R[n], R[Mod[n + 1, 2]], L[n]}, R[n_ /; EvenQ[n]] :> {L[n], R[Mod[n + 1, 2]], R[n], F[Mod[n + 1, 2]]}, L[n_ /; OddQ[n]] :> {R[n], L[Mod[n + 1, 2]], L[n], F[Mod[n + 1, 2]]}, F[n_ /; EvenQ[n]] :> {L[n], R[Mod[n + 1, 2]], R[n], L[Mod[n + 1, 2]]}, F[n_ /; OddQ[n]] :> {R[n], L[Mod[n + 1, 2]], L[n], R[Mod[n + 1, 2]]}}; TurnMap = {F[] -> 0, L[] -> 1, R[_] -> -1}; T1ind[1] = 1; T1ind[2] = 2; T1ind[n_] := 5*T1ind[n - 1] - 4*T1ind[n - 2]; T1Vec[n_] := Append[Mod[FoldList[Plus, Flatten[Nest[# /. HC &, F[0], n] /. TurnMap][[T1ind[n] ;; -(T1ind[n] + 1)]]], 4], 2] Flatten[T1Vec /@ Range[5]]
Formula
a(n,(1/6)*(4+5*2^(2*n))) = 2;
a(n,k) = A163540( (1/12)*(8+7*2^(2*n)-3*(-1)^n *2^(2*n+1))-1+k ).
Comments