cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A306289 The smallest prime factor of numbers greater than 1 and coprime to 6.

This page as a plain text file.
%I A306289 #122 Jul 10 2020 13:23:32
%S A306289 5,7,11,13,17,19,23,5,29,31,5,37,41,43,47,7,53,5,59,61,5,67,71,73,7,
%T A306289 79,83,5,89,7,5,97,101,103,107,109,113,5,7,11,5,127,131,7,137,139,11,
%U A306289 5,149,151,5,157,7,163,167,13,173,5,179,181,5,11,191,193
%N A306289 The smallest prime factor of numbers greater than 1 and coprime to 6.
%C A306289 a(n) is the least prime factor of the n-th number that is greater than 1 and congruent to 1 or 5 (mod 6).
%C A306289 a(n) = 5 when n is congruent to {1, 8} (mod 10) (n is a term in A017281, A017365, or A306277). a(n) = 7 when n is congruent to {2, 11} (mod 14) but not {1, 8} (mod 10). a(n) = 11 when n is congruent to {3, 18} (mod 22) but not a case where it equals 5 or 7. a(n) = 13 when n is congruent to {4, 21} (mod 26) (n is a term in A306285) but not a case where it equals 5, 7, or 11. a(n) = 17 when n is congruent to {5, 28} (mod 34) but not a case where it equals 5, 7, 11, or 13. a(n) = 19 when n is congruent to {6, 31} (mod 38) (n is a term in A306331) but not a case where it equals 5, 7, 11, 13, or 17.
%C A306289 Conjecture: This pattern continues indefinitely. a(n) = A007310(m + 1) when n is congruent to {m, A306277(m + 1)} (mod A091999(m + 1)) but not congruent to {k, A306277(k + 1)} (mod A091999(k + 1)), m > k >= 1. The indices of the first appearance of a number in this sequence supports this conjecture in that they are never, for m > 0, congruent to A306277(m + 1) mod A091999(m + 1).
%D A306289 G. Pólya and G. Szegő, Problems and Theorems in Analysis II (Springer 1924, reprinted 1976), Part Eight, Chap. 2, Section 2, Problems 96 and 105.
%H A306289 Davis Smith, <a href="/A306289/b306289.txt">Table of n, a(n) for n = 1..1000</a>
%F A306289 a(n) = A020639(A007310(n + 1)).
%F A306289 a(n) = A020639(3n + A000034(n + 1)).
%F A306289 a(n) = A020639(6*ceiling(n/2) + (-1)^n).
%F A306289 a(floor(prime(n + 2)/3)) = prime(n + 2).
%e A306289 a(n) is the least term, other than 0, in n-th row of the array A(m,n), where A(m,n) is A007310(m + 1) when A007310(n + 1) mod A007310(m + 1) is congruent to 0, otherwise 0.
%e A306289 Table begins
%e A306289   \m  1 2  3  4  5  6  7  8  9  10  11  12  13  14  15  16 ...
%e A306289   n\
%e A306289    1| 5 0  0  0  0  0  0  0  0   0   0   0   0   0   0   0 ...
%e A306289    2| 0 7  0  0  0  0  0  0  0   0   0   0   0   0   0   0 ...
%e A306289    3| 0 0 11  0  0  0  0  0  0   0   0   0   0   0   0   0 ...
%e A306289    4| 0 0  0 13  0  0  0  0  0   0   0   0   0   0   0   0 ...
%e A306289    5| 0 0  0  0 17  0  0  0  0   0   0   0   0   0   0   0 ...
%e A306289    6| 0 0  0  0  0 19  0  0  0   0   0   0   0   0   0   0 ...
%e A306289    7| 0 0  0  0  0  0 23  0  0   0   0   0   0   0   0   0 ...
%e A306289    8| 5 0  0  0  0  0  0 25  0   0   0   0   0   0   0   0 ...
%e A306289    9| 0 0  0  0  0  0  0  0 29   0   0   0   0   0   0   0 ...
%e A306289   10| 0 0  0  0  0  0  0  0  0  31   0   0   0   0   0   0 ...
%e A306289   11| 5 7  0  0  0  0  0  0  0   0  35   0   0   0   0   0 ...
%e A306289   12| 0 0  0  0  0  0  0  0  0   0   0  37   0   0   0   0 ...
%e A306289   13| 0 0  0  0  0  0  0  0  0   0   0   0  41   0   0   0 ...
%e A306289   14| 0 0  0  0  0  0  0  0  0   0   0   0   0  43   0   0 ...
%e A306289   15| 0 0  0  0  0  0  0  0  0   0   0   0   0   0  47   0 ...
%e A306289   16| 0 7  0  0  0  0  0  0  0   0   0   0   0   0   0  49 ...
%e A306289 For the n-th row of this square array, the leftmost terms, other than 0, are the factors of A(n,n). A(n,n) = A007310(n + 1). If for every m, m < n, A(m,n) = 0, then a(n) = A007310(n + 1) and A007310(n + 1) is prime.
%p A306289 seq(min(op(numtheory[factorset] (6*ceil(n/2)+(-1)^n))), n=1..64) ;
%t A306289 FactorInteger[Rest@ Flatten@ Array[6 # + {1, 5} &, 33, 0]][[All, 1, 1]] (* _Michael De Vlieger_, Feb 15 2019 *)
%t A306289 FactorInteger[#][[1,1]]&/@Select[Range[2,200],CoprimeQ[#,6]&] (* _Harvey P. Dale_, Jul 10 2020 *)
%o A306289 (PARI) for(n=2, 211, if((n%6==1)||(n%6==5), print1(factor(n)[1,1], ", ")))
%o A306289 (PARI) vector(64,n,factor(6*ceil(n/2)+(-1)^n)[1,1])
%o A306289 (PARI) a(n) = n++; factor(n\2*6-(-1)^n)[1,1]; \\ _Michel Marcus_, Feb 06 2019
%Y A306289 Cf. A000034, A007310, A010729, A017281, A017365, A020639, A091999, A273669, A306277, A306285, A306331.
%Y A306289 Cf. A107744, A111863 (bisections).
%K A306289 nonn
%O A306289 1,1
%A A306289 _Davis Smith_, Feb 03 2019