This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A306295 #18 Jun 03 2022 08:17:11 %S A306295 1,3,10,32,107,359,1234,4274,15032,53242,190588,686272,2490399, %T A306295 9081375,33312770,122692130,453999656,1685601038,6282014804, %U A306295 23478897364,88026769844,330831420218,1246635155180,4707414286652,17815452662152,67546709440004,256595322436760 %N A306295 Maximal number of coalescent histories among non-matching pairs consisting of a caterpillar gene tree and a caterpillar species tree with n+2 leaves. %H A306295 Z. M. Himwich and N. A. Rosenberg, <a href="https://arxiv.org/abs/1901.04465">Roadblocked monotonic paths and the enumeration of coalescent histories for non-matching caterpillar gene trees and species trees</a>, arXiv:1901.04465 [q-bio.pE] (2019); Adv. Appl. Math. 113 (2020), 101939. %F A306295 a(n) = C(n+1) - C(floor((n+1)/2))*C(ceiling((n+1)/2)), where C(n) is the n-th term in the Catalan sequence A000108. %e A306295 For n=1, a non-matching caterpillar gene tree and species tree with n+2=3 leaves have only one coalescent history: all coalescences must take place above the root of the species tree. Hence, a(1)=1. %t A306295 b[n_] := %t A306295 Binomial[2 n - 2, n - 1]/ %t A306295 n - (2 Floor[(n - 1)/2])!/(Floor[(n - 1)/2]! Floor[(n + 1)/ %t A306295 2]!) (2 Ceiling[(n - 1)/2])!/(Ceiling[(n - 1)/ %t A306295 2]! Ceiling[(n + 1)/2]!) %t A306295 a[n_] := b[n+2] %t A306295 Table[a[n], {n,1,30}] %Y A306295 A000108 minus A005817. %K A306295 nonn %O A306295 1,2 %A A306295 _Noah A Rosenberg_, Feb 04 2019