This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A306301 #51 Apr 10 2019 02:55:11 %S A306301 14,136,190,266,280,1036,1060,1306,1406,1898,1934,2660,2686,2746,2776, %T A306301 3112,10040,10250,10546,10550,10630,10880,11090,11156,11204,11276, %U A306301 11354,11386,11474,11740,11804,11914,12064,12136,12194,12250,12410,12524,12626,12710,12770,12794,12916,13060 %N A306301 Numbers k such that k^2 reversed is a prime and k^2+(k^2 reversed) is a prime. %C A306301 All terms are even and not divisible by 3. - _Robert Israel_, Apr 09 2019 %H A306301 Robert Israel, <a href="/A306301/b306301.txt">Table of n, a(n) for n = 1..10000</a> %e A306301 14 is a term because 691 (the reverse of 14^2=196) and 196+691=887 are two prime numbers. %p A306301 revdigs:= proc(n) local L,i; %p A306301 L:= convert(n,base,10); %p A306301 add(L[-i]*10^(i-1),i=1..nops(L)) %p A306301 end proc: %p A306301 filter:= proc(k) local v; v:= revdigs(k^2); isprime(v) and isprime(v+k^2) end proc: %p A306301 select(filter, [seq(seq(6*i+j,j=[2,4]),i=0..10000)]); # _Robert Israel_, Apr 09 2019 %t A306301 Select[Range[50000], PrimeQ[IntegerReverse[#^2]] && PrimeQ[#^2 + IntegerReverse[#^2]] &] %o A306301 (PARI) isok(k) = my(kk=fromdigits(Vecrev(digits(k^2)))); isprime(kk) && isprime(k^2+kk); \\ _Michel Marcus_, Apr 01 2019 %Y A306301 Cf. A007488, A059007, A307046. %K A306301 nonn,base %O A306301 1,1 %A A306301 _Robert Price_, Mar 31 2019