A306313 Numbers such that the product of their digits is equal to 10 times the sum of their prime factors, without multiplicity.
1584, 5616, 7452, 8256, 15698, 16956, 18525, 25662, 28512, 34935, 35152, 35275, 35581, 35748, 36584, 46225, 47265, 47594, 51842, 52374, 54479, 55223, 55348, 58432, 65712, 73125, 93875, 118465, 151632, 153615, 154462, 159712, 161785, 172577, 176225, 178754, 182596
Offset: 1
Examples
1584 = 2^4*3^2*11 and 1*5*8*4 = 160 = 10*(2+3+11).
Crossrefs
Cf. A099542.
Programs
-
Maple
with(numtheory): select(n->convert(convert(n,base,10),`*`)=10*add(k,k=factorset(n)),[$1..120000]);
-
Mathematica
Select[Range[2*10^5], Times @@ IntegerDigits[#] == 10 Total[FactorInteger[#][[All, 1]] ] &] (* Michael De Vlieger, Feb 15 2019 *)
Comments