This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A306317 #30 Mar 16 2019 12:25:02 %S A306317 2,3,5,7,13,29,79,293,1619,14947,269237,11570443,1540936027, %T A306317 893681319109,3513374197622981,166491395148719076277, %U A306317 201072926144898161374940903,16390008340104365722976984827792343,320076519482444467256811692239892862140322229,7781106039755041703318535124896118983796534882794414187099 %N A306317 Prime numbers generated by the formula a(n) = round(2^(d^n)), where d is the real constant 1.30076870414817691055252567828266106688423996320151467218595488... %C A306317 The exponent d = 1.3007687... is the smallest found. %H A306317 Simon Plouffe, <a href="/A306317/b306317.txt">Table of n, a(n) for n = 1..24</a> %H A306317 Simon Plouffe, <a href="https://arxiv.org/abs/1901.01849">A set of formulas for primes</a>, arXiv:1901.01849 [math.NT], 2019. %H A306317 Simon Plouffe, <a href="http://vixra.org/abs/1902.0036">Une formule pour les nombres premiers</a>, viXra:1902.0036. %F A306317 a(n) = round(2^(d^n)), where d is a real constant starting 1.30076870414817691055252567828266106688423996320151467218595488... %p A306317 # Computes the values according to the formula, v = 2..., e = 1.30076870414817691055252567828266106688423996320151467218595488..., m the # number of terms. Returns the real and the rounded values (primes). In this case 23 terms will be generated %p A306317 val := proc(s, e, m) %p A306317 local ll, v, n, kk; %p A306317 v := s; %p A306317 ll := []; %p A306317 for n to m do %p A306317 v := v^e; ll := [op(ll), v] %p A306317 end do; %p A306317 return [ll, map(round, ll)] %p A306317 end; %Y A306317 Cf. A323176, A323065, A323611. %K A306317 nonn %O A306317 1,1 %A A306317 _Simon Plouffe_, Feb 06 2019