cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A306317 Prime numbers generated by the formula a(n) = round(2^(d^n)), where d is the real constant 1.30076870414817691055252567828266106688423996320151467218595488...

This page as a plain text file.
%I A306317 #30 Mar 16 2019 12:25:02
%S A306317 2,3,5,7,13,29,79,293,1619,14947,269237,11570443,1540936027,
%T A306317 893681319109,3513374197622981,166491395148719076277,
%U A306317 201072926144898161374940903,16390008340104365722976984827792343,320076519482444467256811692239892862140322229,7781106039755041703318535124896118983796534882794414187099
%N A306317 Prime numbers generated by the formula a(n) = round(2^(d^n)), where d is the real constant 1.30076870414817691055252567828266106688423996320151467218595488...
%C A306317 The exponent d = 1.3007687... is the smallest found.
%H A306317 Simon Plouffe, <a href="/A306317/b306317.txt">Table of n, a(n) for n = 1..24</a>
%H A306317 Simon Plouffe, <a href="https://arxiv.org/abs/1901.01849">A set of formulas for primes</a>, arXiv:1901.01849 [math.NT], 2019.
%H A306317 Simon Plouffe, <a href="http://vixra.org/abs/1902.0036">Une formule pour les nombres premiers</a>, viXra:1902.0036.
%F A306317 a(n) = round(2^(d^n)), where d is a real constant starting 1.30076870414817691055252567828266106688423996320151467218595488...
%p A306317 # Computes the values according to the formula, v = 2..., e = 1.30076870414817691055252567828266106688423996320151467218595488..., m the # number of terms. Returns the real and the rounded values (primes). In this case 23 terms will be generated
%p A306317 val := proc(s, e, m)
%p A306317 local ll, v, n, kk;
%p A306317     v := s;
%p A306317     ll := [];
%p A306317     for n to m do
%p A306317         v := v^e; ll := [op(ll), v]
%p A306317     end do;
%p A306317     return [ll, map(round, ll)]
%p A306317 end;
%Y A306317 Cf. A323176, A323065, A323611.
%K A306317 nonn
%O A306317 1,1
%A A306317 _Simon Plouffe_, Feb 06 2019