cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A306325 Expansion of e.g.f. log(1 + exp(x)*x*(1 + 7*x + 6*x^2 + x^3)).

This page as a plain text file.
%I A306325 #10 May 30 2019 16:17:49
%S A306325 0,1,15,35,-650,-5251,83376,1623439,-19261584,-836109351,5365104400,
%T A306325 636771444011,561938325312,-661384866976523,-7128491581221360,
%U A306325 879709224738485415,21742632225425026816,-1413667730904479933647,-64871991410092201623024,2556051301724027073500035,212244727356899863738042560
%N A306325 Expansion of e.g.f. log(1 + exp(x)*x*(1 + 7*x + 6*x^2 + x^3)).
%H A306325 Seiichi Manyama, <a href="/A306325/b306325.txt">Table of n, a(n) for n = 0..384</a>
%F A306325 E.g.f.: log(1 + Sum_{k>=1} k^4*x^k/k!).
%F A306325 a(0) = 0; a(n) = n^4 - (1/n)*Sum_{k=1..n-1} binomial(n,k)*(n - k)^4*k*a(k).
%p A306325 a:=series(log(1 + exp(x)*x*(1 + 7*x + 6*x^2 + x^3)),x=0,21): seq(n!*coeff(a, x, n),n=0..20); # _Paolo P. Lava_, Mar 26 2019
%t A306325 nmax = 20; CoefficientList[Series[Log[1 + Exp[x] x (1 + 7 x + 6 x^2 + x^3)], {x, 0, nmax}], x] Range[0, nmax]!
%t A306325 a[n_] := a[n] = n^4 - Sum[Binomial[n, k] (n - k)^4 k a[k], {k, 1, n - 1}]/n; a[0] = 0; Table[a[n], {n, 0, 20}]
%Y A306325 Cf. A000583, A033464, A279637, A300452.
%K A306325 sign
%O A306325 0,3
%A A306325 _Ilya Gutkovskiy_, Feb 07 2019