This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A306325 #10 May 30 2019 16:17:49 %S A306325 0,1,15,35,-650,-5251,83376,1623439,-19261584,-836109351,5365104400, %T A306325 636771444011,561938325312,-661384866976523,-7128491581221360, %U A306325 879709224738485415,21742632225425026816,-1413667730904479933647,-64871991410092201623024,2556051301724027073500035,212244727356899863738042560 %N A306325 Expansion of e.g.f. log(1 + exp(x)*x*(1 + 7*x + 6*x^2 + x^3)). %H A306325 Seiichi Manyama, <a href="/A306325/b306325.txt">Table of n, a(n) for n = 0..384</a> %F A306325 E.g.f.: log(1 + Sum_{k>=1} k^4*x^k/k!). %F A306325 a(0) = 0; a(n) = n^4 - (1/n)*Sum_{k=1..n-1} binomial(n,k)*(n - k)^4*k*a(k). %p A306325 a:=series(log(1 + exp(x)*x*(1 + 7*x + 6*x^2 + x^3)),x=0,21): seq(n!*coeff(a, x, n),n=0..20); # _Paolo P. Lava_, Mar 26 2019 %t A306325 nmax = 20; CoefficientList[Series[Log[1 + Exp[x] x (1 + 7 x + 6 x^2 + x^3)], {x, 0, nmax}], x] Range[0, nmax]! %t A306325 a[n_] := a[n] = n^4 - Sum[Binomial[n, k] (n - k)^4 k a[k], {k, 1, n - 1}]/n; a[0] = 0; Table[a[n], {n, 0, 20}] %Y A306325 Cf. A000583, A033464, A279637, A300452. %K A306325 sign %O A306325 0,3 %A A306325 _Ilya Gutkovskiy_, Feb 07 2019