This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A306343 #49 Feb 16 2025 08:33:55 %S A306343 1,1,1,1,2,2,2,3,9,9,3,8,28,48,28,8,20,90,250,250,90,20,80,360,1200, %T A306343 1760,1200,360,80,210,1526,5922,12502,12502,5922,1526,210,896,7616, %U A306343 34160,82880,111776,82880,34160,7616,896,3360,32460,185460,576060,1017060,1017060,576060,185460,32460,3360 %N A306343 Number T(n,k) of defective (binary) heaps on n elements with k defects; triangle T(n,k), n>=0, 0<=k<=max(0,n-1), read by rows. %C A306343 A defect in a defective heap is a parent-child pair not having the correct order. %C A306343 T(n,k) is the number of permutations p of [n] having exactly k indices i in {1,...,n} such that p(i) > p(floor(i/2)). %C A306343 T(n,0) counts perfect (binary) heaps on n elements (A056971). %H A306343 Alois P. Heinz, <a href="/A306343/b306343.txt">Rows n = 0..190, flattened</a> %H A306343 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/Heap.html">Heap</a> %H A306343 Wikipedia, <a href="https://en.wikipedia.org/wiki/Binary_heap">Binary heap</a> %F A306343 T(n,k) = T(n,n-1-k) for n > 0. %F A306343 Sum_{k>=0} k * T(n,k) = A001286(n). %F A306343 Sum_{k>=0} (k+1) * T(n,k) = A001710(n-1) for n > 0. %F A306343 Sum_{k>=0} (k+2) * T(n,k) = A038720(n) for n > 0. %F A306343 Sum_{k>=0} (k+3) * T(n,k) = A229039(n) for n > 0. %F A306343 Sum_{k>=0} (k+4) * T(n,k) = A230056(n) for n > 0. %e A306343 T(4,0) = 3: 4231, 4312, 4321. %e A306343 T(4,1) = 9: 2413, 3124, 3214, 3241, 3412, 3421, 4123, 4132, 4213. %e A306343 T(4,2) = 9: 1342, 1423, 1432, 2134, 2143, 2314, 2341, 2431, 3142. %e A306343 T(4,3) = 3: 1234, 1243, 1324. %e A306343 (The examples use max-heaps.) %e A306343 Triangle T(n,k) begins: %e A306343 1; %e A306343 1; %e A306343 1, 1; %e A306343 2, 2, 2; %e A306343 3, 9, 9, 3; %e A306343 8, 28, 48, 28, 8; %e A306343 20, 90, 250, 250, 90, 20; %e A306343 80, 360, 1200, 1760, 1200, 360, 80; %e A306343 210, 1526, 5922, 12502, 12502, 5922, 1526, 210; %e A306343 896, 7616, 34160, 82880, 111776, 82880, 34160, 7616, 896; %e A306343 ... %p A306343 b:= proc(u, o) option remember; local n, g, l; n:= u+o; %p A306343 if n=0 then 1 %p A306343 else g:= 2^ilog2(n); l:= min(g-1, n-g/2); expand( %p A306343 add(add(binomial(j-1, i)*binomial(n-j, l-i)* %p A306343 b(i, l-i)*b(j-1-i, n-l-j+i), i=0..min(j-1, l)), j=1..u)+ %p A306343 add(add(binomial(j-1, i)*binomial(n-j, l-i)* %p A306343 b(l-i, i)*b(n-l-j+i, j-1-i), i=0..min(j-1, l)), j=1..o)*x) %p A306343 fi %p A306343 end: %p A306343 T:= n-> (p-> seq(coeff(p, x, i), i=0..degree(p)))(b(n, 0)): %p A306343 seq(T(n), n=0..10); %t A306343 b[u_, o_] := b[u, o] = Module[{n = u + o, g, l}, %t A306343 If[n == 0, 1, g := 2^Floor@Log[2, n]; l = Min[g-1, n-g/2]; Expand[ %t A306343 Sum[Sum[ Binomial[j-1, i]* Binomial[n-j, l-i]*b[i, l-i]* %t A306343 b[j-1-i, n-l-j+i], {i, 0, Min[j-1, l]}], {j, 1, u}]+ %t A306343 Sum[Sum[Binomial[j - 1, i]* Binomial[n-j, l-i]*b[l-i, i]* %t A306343 b[n-l-j+i, j-1-i], {i, 0, Min[j-1, l]}], {j, 1, o}]*x]]]; %t A306343 T[n_] := CoefficientList[b[n, 0], x]; %t A306343 T /@ Range[0, 10] // Flatten (* _Jean-François Alcover_, Feb 17 2021, after _Alois P. Heinz_ *) %Y A306343 Columns k=0-10 give: A056971, A323957, A323958, A323959, A323960, A323961, A323962, A323963, A323964, A323965, A323966. %Y A306343 Row sums give A000142. %Y A306343 T(n,floor(n/2)) gives A306356. %Y A306343 Cf. A001286, A001710, A008292, A038720, A229039, A230056, A264902, A306393. %K A306343 nonn,tabf %O A306343 0,5 %A A306343 _Alois P. Heinz_, Feb 08 2019