This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A306346 #34 Mar 06 2025 11:10:06 %S A306346 0,1,1,1,3,1,1,1,3,1,1,1,3,1,3,1,1,1,1,1,3,1,3,1,3,1,1,1,1,1,1,1,5,1, %T A306346 1,1,3,1,3,1,3,1,1,1,1,1,1,1,3,1,7,1,1,1,1,1,5,1,1,1,3,1,3,1,3,1,1,1, %U A306346 1,1,1,1,3,1,5,1,1,1,7,1,1,1,1,1,3,1,7,1 %N A306346 Start with the sequence S(1) = [0], and for n >= 1 define S(n+1) to equal the concatenation of S(n) with the RUNS transform of S(n) when read in reverse order. This sequence is the limit of that process as n goes to infinity. %C A306346 Conjecture 1: a(n) <= 7. %C A306346 Conjecture 2: a(n) is odd for n > 1 and when a(n) = 3, 5 or 7, n is odd. %C A306346 Property of the sequence: %C A306346 a(n) = 3 for the odd values n = 5, 9, 13, 15, 21, 23, 25, 37, 39, ... %C A306346 a(n) = 5 for the odd values n = 33, 57, 75, 93, 111, 115, 129, 147, ... %C A306346 a(n) = 7 for the odd values n = 51, 79, 87, 121, 133, 141, 185, 203, ... %C A306346 Remark: %C A306346 If row 1 = [1], the sequence a(n) becomes b(n) = 1, 1, 2, 1, 2, 1, 1, 1, 2, 1, 3, 1, 1, 1, 2, 1, 3, 1, 1, 1, 3, 1, 1, 1, 2, 1, 3, 1, 3, 1, 1, 1, ... and it is conjectured that b(n) <= 7. %C A306346 Statistics for n <= 10^5: %C A306346 +--------------+-------------------------+------------+ %C A306346 | a(n) | number of occurrences | percentage | %C A306346 | | for n <= 10^5 | | %C A306346 +--------------+-------------------------+------------+ %C A306346 | 1 | 72244 | 72.244% | %C A306346 | 3 | 18030 | 18.030% | %C A306346 | 5 | 6806 | 6.806% | %C A306346 | 7 | 2919 | 2.919% | %C A306346 +--------------+-------------------------+------------+ %e A306346 We may consider this sequence to be the limit of the rows of the irregular triangle in which row n+1 equals the concatenation of row n with the RUNS transform of row n when read in reverse order, as illustrated below. %e A306346 Start with row 1 = [0]; %e A306346 the RUNS of row 1 in reverse = [1], so row 2 = row 1 + [1] = [0, 1]; %e A306346 the RUNS of row 2 in reverse = [1, 1], so row 3 = row 2 + [1, 1] = [0, 1, 1, 1]; %e A306346 the RUNS of row 3 in reverse = [3, 1], so row 4 = row 3 + [3, 1] = [0, 1, 1, 1, 3, 1]; %e A306346 the RUNS of row 4 in reverse = [1, 1, 3, 1], so row 5 = row 4 + [1, 1, 3, 1] = [0, 1, 1, 1, 3, 1, 1, 1, 3, 1]; %e A306346 etc. %e A306346 The irregular triangle starts: %e A306346 [0]; %e A306346 [0, 1]; %e A306346 [0, 1, 1, 1]; %e A306346 [0, 1, 1, 1, 3, 1]; %e A306346 [0, 1, 1, 1, 3, 1, 1, 1, 3, 1]; %e A306346 [0, 1, 1, 1, 3, 1, 1, 1, 3, 1, 1, 1, 3, 1, 3, 1]; %e A306346 [0, 1, 1, 1, 3, 1, 1, 1, 3, 1, 1, 1, 3, 1, 3, 1, 1, 1, 1, 1, 3, 1, 3, 1, 3, 1]; %e A306346 ... %e A306346 in which the limit of the rows yields this sequence. %e A306346 The row lengths of the above triangle equal A381357 (offset 3). %p A306346 n0:=1:T:=array(1..1000,[0$1000]): %p A306346 for n from 1 to 50 do : %p A306346 it:=1:i:=n0: %p A306346 for k from n0 by -1 to 2 do: %p A306346 if T[k]=T[k-1] %p A306346 then %p A306346 it:=it+1: %p A306346 else %p A306346 i:=i+1:T[i]:=it:it:=1: %p A306346 fi: %p A306346 od: %p A306346 i:=i+1:T[i]:=1:n0:=i: %p A306346 od: %p A306346 print(T): %o A306346 (PARI) \\ From _Paul D. Hanna_, Mar 04 2025: (Start) %o A306346 \\ Print the first N rows of the irregular triangle. %o A306346 \\ This sequence equals the limit of the rows. %o A306346 \\ RUNS(V) Returns vector of run lengths in vector V: %o A306346 {RUNS(V) = my(R=[], c=1); if(#V>1, for(n=2, #V, if(V[n]==V[n-1], c=c+1, R=concat(R, c); c=1))); R=concat(R, c)} %o A306346 \\ REV(V) Reverses order of vector V: %o A306346 {REV(V) = Vec(Polrev(Ser(V)))} %o A306346 \\ Generates N rows as a vector A of row vectors %o A306346 {N=12; A=vector(N); A[1]=[0]; %o A306346 for(n=1, #A-1, A[n+1] = concat(A[n], RUNS(REV(A[n]))); );} %o A306346 for(n=1,N,print(A[n])) \\ (End) %Y A306346 Cf. A000002, A381587, A381356, A381357. %K A306346 nonn %O A306346 1,5 %A A306346 _Michel Lagneau_, Feb 09 2019 %E A306346 Name corrected and edited by _Paul D. Hanna_, Mar 05 2025