This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A306348 #29 Feb 14 2019 10:06:45 %S A306348 1,2,3,4,6,12,24,60 %N A306348 Numbers k such that exp(H_k)*log(H_k) <= sigma(k), where H_k is the harmonic number. %C A306348 If the Riemann hypothesis is true, there are no more terms. %H A306348 J. C. Lagarias, <a href="https://arxiv.org/abs/math/0008177">An elementary problem equivalent to the Riemann hypothesis</a>, arXiv:math/0008177 [math.NT], 2000-2001; Am. Math. Monthly 109 (#6, 2002), 534-543. %e A306348 Let b(n) = exp(H_{a(n)})*log(H_{a(n)}). %e A306348 n | a(n) | b(n) | sigma(a(n)) %e A306348 --+------+------------+------------- %e A306348 1 | 1 | 0 | 1 %e A306348 2 | 2 | 1.817... | 3 %e A306348 3 | 3 | 3.791... | 4 %e A306348 4 | 4 | 5.894... | 7 %e A306348 5 | 6 | 10.384... | 12 %e A306348 6 | 12 | 25.218... | 28 %e A306348 7 | 24 | 57.981... | 60 %e A306348 8 | 60 | 166.296... | 168 %t A306348 For[k = 1, True, k++, If[Exp[HarmonicNumber[k]] Log[HarmonicNumber[k]] <= DivisorSigma[1, k], Print[k]]] (* _Jean-François Alcover_, Feb 14 2019 *) %Y A306348 Cf. A000203, A067698, A079526, A079527. %K A306348 nonn,more %O A306348 1,2 %A A306348 _Seiichi Manyama_, Feb 09 2019