This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A306355 #63 Sep 06 2023 16:01:46 %S A306355 1,3,7,17,19,23,29,47,59,61,97,109,113,131,149,167,179,181,193,223, %T A306355 229,233,257,263,269,289,313,337,361,367,379,383,389,419,433,461,487, %U A306355 491,499,503,509,541,571,577,593,619,647,659,701,709,727,743,811,821,823 %N A306355 Numbers k such that the period of 1/k, or 0 if 1/k terminates, is strictly greater than the period of the decimal expansion of 1/m for all m < k. %C A306355 This sequence is infinite because 1/(10^k-1) has a period of k for all k, so the period can be arbitrarily large. %C A306355 Are 1, 3, 289 and 361 the only terms that are not in A001913? - _Robert Israel_, Feb 10 2019 %H A306355 Robert Israel, <a href="/A306355/b306355.txt">Table of n, a(n) for n = 1..10000</a> %H A306355 Project Euler, <a href="https://projecteuler.net/problem=26">Reciprocal cycles: Problem 26</a> %H A306355 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/RepeatingDecimal.html">Repeating Decimal</a> %F A306355 RECORDS transform of A051626. %e A306355 7 is a term because 1/7 has a period of 6, which is greater than the periods of 1/m for m < 7. %p A306355 count:= 1: A[1]:= 1: m:= 0: %p A306355 for k from 0 to 100 do %p A306355 for d in [3,7,9,11] do %p A306355 x:= 10*k+d; %p A306355 p:= numtheory:-order(10,x); %p A306355 if p > m then %p A306355 m := p; %p A306355 count:= count+1; %p A306355 A[count]:= x %p A306355 fi %p A306355 od od: %p A306355 seq(A[i],i=1..count); # _Robert Israel_, Feb 10 2019 %t A306355 ResourceFunction["ProgressiveMaxPositions"]@ %t A306355 Map[n |-> %t A306355 First[RealDigits[n]] /. {{___, list_?ListQ} :> Length[list], %t A306355 list_?ListQ -> 0}][ %t A306355 1/Range[1050]] (* _Peter Cullen Burbery_, Aug 05 2023 *) %Y A306355 Cf. A051626, A007732. %Y A306355 Contains A001913. %K A306355 nonn,base %O A306355 1,2 %A A306355 _Matthew Schulz_, Feb 09 2019