A306357 Number of nonempty subsets of {1, ..., n} containing no three cyclically successive elements.
0, 1, 3, 6, 10, 20, 38, 70, 130, 240, 442, 814, 1498, 2756, 5070, 9326, 17154, 31552, 58034, 106742, 196330, 361108, 664182, 1221622, 2246914, 4132720, 7601258, 13980894, 25714874, 47297028, 86992798, 160004702, 294294530, 541292032, 995591266, 1831177830
Offset: 0
Keywords
Examples
The a(1) = 1 through a(5) = 20 stable subsets: {1} {1} {1} {1} {1} {2} {2} {2} {2} {1,2} {3} {3} {3} {1,2} {4} {4} {1,3} {1,2} {5} {2,3} {1,3} {1,2} {1,4} {1,3} {2,3} {1,4} {2,4} {1,5} {3,4} {2,3} {2,4} {2,5} {3,4} {3,5} {4,5} {1,2,4} {1,3,4} {1,3,5} {2,3,5} {2,4,5}
Programs
-
Mathematica
stabsubs[g_]:=Select[Rest[Subsets[Union@@g]],Select[g,Function[ed,UnsameQ@@ed&&Complement[ed,#]=={}]]=={}&]; Table[Length[stabsubs[Partition[Range[n],3,1,1]]],{n,15}]
Formula
For n >= 3 we have a(n) = A001644(n) - 1.
From Chai Wah Wu, Jan 06 2020: (Start)
a(n) = 2*a(n-1) - a(n-4) for n > 6.
G.f.: x*(x^5 + x^4 - 2*x^3 + x + 1)/(x^4 - 2*x + 1). (End)
Comments