This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A306361 #22 Nov 18 2019 16:44:00 %S A306361 1,2,3,4,5,6,7,8,9,10,20,50,100,110,111,153,200,221,370,371,407,500, %T A306361 702,1000,1010,1011,1020,1100,1101,1110,1121,1122,1634,2000,2322,4104, %U A306361 5000,8208,9474,10000,10010,10011,10100,10101,10110,11000,11001,11010,11022,11100,11122,11220,12012,12110,12210,12320,14550 %N A306361 Numbers k divisible by A101337(k) (narcissistic function). %C A306361 A005188 is a subsequence of this sequence. %C A306361 Numbers in A007088 with either 3 or 9 ones are terms of this sequence. - _Chai Wah Wu_, Feb 26 2019 %C A306361 For all N in A007088 we have A101337(N) = A007953(N) = number of digits '1'; whenever this equals 2^k*5^m (k, m >= 0) and N ends in max(k,m) '0's, then N is also in this sequence. - _M. F. Hasler_, Nov 18 2019 %e A306361 For k = 20, 20 / (2^2 + 0^2) = 5; %e A306361 for k = 221, 221 / (2^3 + 2^3 + 1^3) = 13. %o A306361 (PARI) isok(n) = frac(n/A101337(n)) == 0; \\ _Michel Marcus_, Feb 11 2019 %o A306361 (PARI) select( is_A306361=t->!(t%A101337(t)), [0..9999]) \\ _M. F. Hasler_, Nov 18 2019 %Y A306361 Cf. A005188, A007088, A101337, A306354, A306360. %K A306361 nonn,base %O A306361 1,2 %A A306361 _Ctibor O. Zizka_, Feb 10 2019