This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A306364 #24 Jan 03 2025 09:34:56 %S A306364 1,3,12,3,60,45,360,540,45,2520,6300,1575,20160,75600,37800,1575, %T A306364 181440,952560,793800,99225,1814400,12700800,15876000,3969000,99225, %U A306364 19958400,179625600,314344800,130977000,9823275 %N A306364 Triangular array of the number of binary, rooted, leaf-labeled tree topologies with n leaves and k cherries, n >= 2, 1 <= k <= floor(n/2). %C A306364 A cherry is an internal node with exactly two descendant leaves. Each binary, rooted, leaf-labeled tree topology with n leaves has at least 1 cherry and at most floor(n/2) cherries. %H A306364 Robert S. Maier, <a href="https://doi.org/10.1016/j.aam.2023.102485">Triangular recurrences, generalized Eulerian numbers, and related number triangles</a>, Adv. Appl. Math. 146 (2023), 102485. %H A306364 Noah A. Rosenberg, <a href="https://doi.org/10.1016/j.aam.2018.09.001">Enumeration of lonely pairs of gene trees and species trees by means of antipodal cherries</a>, Adv. Appl. Math. 102 (2019), 1-17. %H A306364 Taoyang Wu and Kwok Pui Choi, <a href="https://doi.org/10.1016/j.tpb.2015.11.004">On joint subtree distributions under two evolutionary models</a>, Theor. Pop. Biol. 108 (2016), 13-23. %F A306364 T(n,k) = n! (n-2)! / (2^(2k-1) (n-2k)! k! (k-1)! ). %e A306364 For n=4 leaves A, B, C, and D, a(4,1)=12 and a(4,2)=3. The 12 labeled topologies with 1 cherry are (((A,B),C),D), (((A,B),D),C), (((A,C),B),D), (((A,C),D),B), (((A,D),B),C), (((A,D),C),B), (((B,C),A),D), (((B,C),D),A), (((B,D),A),C), (((B,D),C),A), (((C,D),A),B), (((C,D),B),A). The 3 labeled topologies with 2 cherries are ((A,B),(C,D)), ((A,C),(B,D)), ((A,D),(B,C)). %e A306364 Triangular array begins: %e A306364 1; %e A306364 3; %e A306364 12, 3; %e A306364 60, 45; %e A306364 360, 540, 45; %e A306364 2520, 6300, 1575; %e A306364 20160, 75600, 37800, 1575; %e A306364 181440, 952560, 793800, 99225; %e A306364 1814400, 12700800, 15876000, 3969000, 99225; %e A306364 ... %t A306364 Table[n! (n - 2)!/(2^(2 k - 1) (n - 2 k)! k! (k - 1)!), {n, 2, 15}, {k, 1, Floor[n/2]}] %Y A306364 Row sums equal A001147(n-1). %Y A306364 Column k=1 gives A001710. %Y A306364 T(2n,n) gives A079484(n-1). %K A306364 nonn,tabf %O A306364 2,2 %A A306364 _Noah A Rosenberg_, Feb 10 2019