This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A306373 #23 Feb 14 2019 16:34:01 %S A306373 120,672,4320,4680,26208,523776,20427264,29795040,34369920,96445440, %T A306373 197064960,459818240,557107200 %N A306373 Integers m such that the sum of the first k divisors is equal to 2*m for some k less than the number of divisors of m. %C A306373 3-perfect numbers (A005820) are terms. %C A306373 All known terms of A055153 (abundancy 7/2) are terms. %C A306373 1907020800 (with abundancy 23/6) is a term too. %C A306373 A055153 is a subsequence, because no term of that sequence may be odd and so for each k in A055153 we have 2*k = sigma(k) - k - k/2. - _Charlie Neder_, Feb 12 2019 %o A306373 (PARI) isok(n) = {if (sigma(n) < 2*n, return (0)); my(d = divisors(n), s = 0); for (k=1, #d-1, s += d[k]; if (s == 2*n, return (1)); if (s > 2*n, break);); return (0);} %o A306373 (PARI) is(n) = my(d = divisors(n), s = vecsum(d) - d[#d]); forstep(i = #d-1, 1, -1, if(s <= 2*n, return(s == 2*n)); s-=d[i]); 0 \\ _David A. Corneth_, Feb 11 2019 %Y A306373 Cf. A005820 (3-perfect numbers), A055153 (abundancy 7/2). %Y A306373 Cf. A064510, A194472 (both with equal to m rather than to 2*m). %K A306373 nonn,more %O A306373 1,1 %A A306373 _Michel Marcus_, Feb 11 2019 %E A306373 a(11)-a(13) from _Jinyuan Wang_, Feb 11 2019