This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A306395 #25 Feb 27 2019 01:32:09 %S A306395 2,3,11,19,23,31,37,79,83,97,113,131,139,157,173,181,191,211,229,233, %T A306395 239,241,251,263,271,281,293,331,337,359,367,379,419,431,439,449,503, %U A306395 541,547,601,607,619,641,653,659,661,691,701,719,727,743,761,769,809 %N A306395 Primes g such that 8*g + 2*p is a primorial for some twin prime p. %C A306395 So far, I find that there exists at least one prime g, and at least one twin prime p in A001097, such that 8g + 2p is a primorial. Some of the related twin primes are rather large. The twin related to a(112), for instance, is 242 digits long. For each n, the program returns the primorial, g, g (mod 30) the twin prime (mod 30) and the twin prime. These data are in a linked file. %H A306395 Michael G. Kaarhus, <a href="/A306395/b306395.txt">Table of n, a(n) for n = 0..250</a> %H A306395 Michael G. Kaarhus, <a href="/A306395/a306395.txt">Additional data</a> %e A306395 n | b# = 8 * g + 2 * p greater or lesser %e A306395 --+---------------------------------------------- %e A306395 1 | 5# = 8 * 2 + 2 * 7 greater %e A306395 2 | 5# = 8 * 3 + 2 * 3 lesser %e A306395 3 | 7# = 8 * 11 + 2 * 61 greater %e A306395 4 | 7# = 8 * 19 + 2 * 29 lesser %e A306395 5 | 7# = 8 * 23 + 2 * 13 greater %e A306395 6 | 11# = 8 * 31 + 2 * 1031 lesser %o A306395 (CALC) #!/usr/bin/calc -q -f %o A306395 global b=5, chck=list(), g=1, gt, mg30=2, mg6, mp30=7, n=1, oar=pfact(b)/2, %o A306395 tpr=7, ts='greatr', fmt = "%4d%s%5d%s%7d%7d%9d%11s%s%d\n"; %o A306395 define bookem(an) { %o A306395 mp30=mod(tpr, 30); %o A306395 printf(fmt, n, '.', b, '#', an, mg30, mp30, ts, ' ', tpr); %o A306395 n++; append(chck, an); return(an); %o A306395 } %o A306395 define incg() { %o A306395 top: g=nextprime(g); mg6=mod(g, 6); mg30=mod(g, 30); %o A306395 if (mg30 == 13 || mg30 == 17) {goto top;} %o A306395 else {gt=g*4; return(mg30);} %o A306395 } %o A306395 define incb(p) {b=nextprime(p); oar=pfact(b)/2; return(b);} %o A306395 print; %o A306395 printf(fmt, 'n', '.', 'b', '#', 'g', 'g%30', 'twin%30', 'twin type', ' ', 'twin prime'); %o A306395 print '----------------------------------------------------------'; %o A306395 for (i=0; i<=1; i++) {g=nextprime(g); bookem(g); tpr=3; ts='lesser'; mg30=3;} %o A306395 b=incb(b); while (g <= b) {incg();} %o A306395 while (n <= 35) { %o A306395 while (g > b) { %o A306395 tpr=oar-gt; %o A306395 if (tpr <= 7) {incb(b); continue;} %o A306395 if (ptest(tpr, 200)) { %o A306395 if (mg6 == 1 && ptest(tpr+2, 200)) { %o A306395 ts='lesser'; bookem(g); break; %o A306395 } %o A306395 else {if (ptest(tpr-2, 200)) { %o A306395 ts='greatr'; bookem(g); break; %o A306395 } %o A306395 } %o A306395 } %o A306395 incb(b); %o A306395 } %o A306395 incg(); %o A306395 while (oar-gt > 0) {b=prevprime(b); oar=pfact(b)/2;} %o A306395 } %o A306395 print; chs=size(chck)-1; for (i=0; i <= chs; i++) {print i+1, chck[[i]];} %Y A306395 Subsequence of A000040. Supersequence of A218046. %K A306395 nonn %O A306395 1,1 %A A306395 _Michael G. Kaarhus_, Feb 12 2019