A306397 Sum of the coefficients in the Schur expansion of Product_{1<=i<=j<=n} (1+x_i+x_j), which is the total Chern class for the vector bundle Sym^2(E) where E is a vector bundle over a smooth complex projective variety of rank n with Chern roots x_1,...,x_n.
3, 16, 147, 2304, 61347, 2768896, 211579212, 27349221376, 5977081440300, 2207706749337600, 1377785820669766875
Offset: 1
Links
- S. Billey, B. Rhoades, and V. Tewari, Boolean product polynomials, Schur positivity, and Chern plethysm, arXiv:1902.11165 [math.CO], 2019.
- A. Lascoux, Classes de Chern d'un produit tensoriel, C. R. Acad. Sci. Paris Ser. A-B286 (1978), 385--387.
Crossrefs
Cf. A005130.
Comments