cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A306411 a(n) = phi(n^6) = n^5*phi(n).

Original entry on oeis.org

1, 32, 486, 2048, 12500, 15552, 100842, 131072, 354294, 400000, 1610510, 995328, 4455516, 3226944, 6075000, 8388608, 22717712, 11337408, 44569782, 25600000, 49009212, 51536320, 141599546, 63700992, 195312500, 142576512, 258280326, 206524416, 574312172, 194400000, 858874530, 536870912, 782707860, 726966784
Offset: 1

Views

Author

Jianing Song, Feb 13 2019

Keywords

Comments

The number of elements of the wreath product of C_n and S_6 with cycle partition equal to (6*n) is equal to 5!*a(n), where C_n is the cyclic group of order n, S_6 the symmetric group on 6 elements. - Josaphat Baolahy, Mar 13 2024

Crossrefs

Eulerphi(n^e): A000010 (e=1), A002618 (e=2), A053191 (e=3), A189393 (e=4), A238533 (e=5), this sequence (e=6), A239442 (e=7), A306412 (e=8), A239443 (e=9).

Programs

  • Mathematica
    Array[EulerPhi[#] #^5 &, 34] (* Michael De Vlieger, Feb 17 2019 *)
  • PARI
    a(n) = n^5 * eulerphi(n)

Formula

Multiplicative with a(p^e) = (p - 1)*p^(6*e-1).
Dirichlet g.f.: zeta(s - 6) / zeta(s - 5).
Sum_{k=1..n} a(k) ~ 6*n^7 / (7*Pi^2). See A239443 for a more general formula.
Sum_{k>=1} 1/a(k) = Product_{primes p} (1 + p/(p^7 - p^6 - p + 1)) = 1.03396580456393429553879930771676667947490034699829164744357501993310897305... - Vaclav Kotesovec, Sep 20 2020