This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A306418 #7 Feb 14 2019 20:22:25 %S A306418 1,0,1,0,2,0,0,2,3,0,1,2,12,0,0,0,12,35,5,0,0,5,56,100,42,0,0,0,14, %T A306418 282,343,231,7,0,0,0,66,1406,1476,1088,104,0,0,0,0,307,7592,7383,4929, %U A306418 909,27,0,0,0,0,1554,44227,40514,22950,6240,470,20,0,0,0,0 %N A306418 Regular triangle read by rows where T(n, k) is the number of set partitions of {1, ..., n} requiring k steps of removing singletons and cyclical adjacency initiators until reaching a fixed point, n >= 0, 0 <= k <= n. %C A306418 See Callan's article for details on this transformation (SeparateIS). %H A306418 David Callan, <a href="https://arxiv.org/abs/math/0508052">On conjugates for set partitions and integer compositions</a>, arXiv:math/0508052 [math.CO], 2005. %e A306418 Triangle begins: %e A306418 1 %e A306418 0 1 %e A306418 0 2 0 %e A306418 0 2 3 0 %e A306418 1 2 12 0 0 %e A306418 0 12 35 5 0 0 %e A306418 5 56 100 42 0 0 0 %e A306418 14 282 343 231 7 0 0 0 %e A306418 66 1406 1476 1088 104 0 0 0 0 %e A306418 307 7592 7383 4929 909 27 0 0 0 0 %t A306418 sps[{}]:={{}};sps[set:{i_,___}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,___}]; %t A306418 qbj[stn_]:=With[{ini=Join@@Table[Select[s,If[#==Max@@Max@@@stn,MemberQ[s,First[Union@@stn]],MemberQ[s,(Union@@stn)[[Position[Union@@stn,#][[1,1]]+1]]]]&],{s,stn}],sng=Join@@Select[stn,Length[#]==1&]},DeleteCases[Table[Complement[s,Union[sng,ini]],{s,stn}],{}]]; %t A306418 Table[Length[Select[sps[Range[n]],Length[FixedPointList[qbj,#]]-2==k&]],{n,0,8},{k,0,n}] %Y A306418 Row sums are A000110. First column is A324011. %Y A306418 Cf. A000126, A000296, A001610, A306416, A306417, A324012. %K A306418 nonn,tabl %O A306418 0,5 %A A306418 _Gus Wiseman_, Feb 14 2019