cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A306418 Regular triangle read by rows where T(n, k) is the number of set partitions of {1, ..., n} requiring k steps of removing singletons and cyclical adjacency initiators until reaching a fixed point, n >= 0, 0 <= k <= n.

This page as a plain text file.
%I A306418 #7 Feb 14 2019 20:22:25
%S A306418 1,0,1,0,2,0,0,2,3,0,1,2,12,0,0,0,12,35,5,0,0,5,56,100,42,0,0,0,14,
%T A306418 282,343,231,7,0,0,0,66,1406,1476,1088,104,0,0,0,0,307,7592,7383,4929,
%U A306418 909,27,0,0,0,0,1554,44227,40514,22950,6240,470,20,0,0,0,0
%N A306418 Regular triangle read by rows where T(n, k) is the number of set partitions of {1, ..., n} requiring k steps of removing singletons and cyclical adjacency initiators until reaching a fixed point, n >= 0, 0 <= k <= n.
%C A306418 See Callan's article for details on this transformation (SeparateIS).
%H A306418 David Callan, <a href="https://arxiv.org/abs/math/0508052">On conjugates for set partitions and integer compositions</a>, arXiv:math/0508052 [math.CO], 2005.
%e A306418 Triangle begins:
%e A306418     1
%e A306418     0    1
%e A306418     0    2    0
%e A306418     0    2    3    0
%e A306418     1    2   12    0    0
%e A306418     0   12   35    5    0    0
%e A306418     5   56  100   42    0    0    0
%e A306418    14  282  343  231    7    0    0    0
%e A306418    66 1406 1476 1088  104    0    0    0    0
%e A306418   307 7592 7383 4929  909   27    0    0    0    0
%t A306418 sps[{}]:={{}};sps[set:{i_,___}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,___}];
%t A306418 qbj[stn_]:=With[{ini=Join@@Table[Select[s,If[#==Max@@Max@@@stn,MemberQ[s,First[Union@@stn]],MemberQ[s,(Union@@stn)[[Position[Union@@stn,#][[1,1]]+1]]]]&],{s,stn}],sng=Join@@Select[stn,Length[#]==1&]},DeleteCases[Table[Complement[s,Union[sng,ini]],{s,stn}],{}]];
%t A306418 Table[Length[Select[sps[Range[n]],Length[FixedPointList[qbj,#]]-2==k&]],{n,0,8},{k,0,n}]
%Y A306418 Row sums are A000110. First column is A324011.
%Y A306418 Cf. A000126, A000296, A001610, A306416, A306417, A324012.
%K A306418 nonn,tabl
%O A306418 0,5
%A A306418 _Gus Wiseman_, Feb 14 2019