This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A306419 #14 Sep 02 2025 09:25:48 %S A306419 1,1,1,1,4,11,32,99,326,1123,4064,15291,59924,242945,1019584,4409233, %T A306419 19648674,89938705,422744384,2035739041,10039057524,50610247483, %U A306419 260704414816,1370387233859,7346982653702,40131663286851,223238920709024,1263531826402891,7273434344119460 %N A306419 Number of set partitions of {1, ..., n} whose blocks are all singletons and pairs, not including {1, n} or {i, i + 1} for any i. %C A306419 Also the number of spanning subgraphs of the complement of an n-cycle, with no overlapping edges. %C A306419 I.e., for n >= 3, also the number of matchings in the complement of the cycle graph C_n. - _Eric W. Weisstein_, Sep 02 2025 %H A306419 Andrew Howroyd, <a href="/A306419/b306419.txt">Table of n, a(n) for n = 0..500</a> %F A306419 a(n) = Sum_{k=0..floor(n/2)} (-1)^k*A034807(n, k)*A000085(n-2*k) for n > 2. - _Andrew Howroyd_, Aug 30 2019 %e A306419 The a(1) = 1 through a(5) = 11 set partitions: %e A306419 {{1}} {{1}{2}} {{1}{2}{3}} {{13}{24}} {{1}{24}{35}} %e A306419 {{1}{24}{3}} {{13}{24}{5}} %e A306419 {{13}{2}{4}} {{13}{25}{4}} %e A306419 {{1}{2}{3}{4}} {{14}{2}{35}} %e A306419 {{14}{25}{3}} %e A306419 {{1}{2}{35}{4}} %e A306419 {{1}{24}{3}{5}} %e A306419 {{1}{25}{3}{4}} %e A306419 {{13}{2}{4}{5}} %e A306419 {{14}{2}{3}{5}} %e A306419 {{1}{2}{3}{4}{5}} %t A306419 stableSets[u_,Q_]:=If[Length[u]===0,{{}},With[{w=First[u]},Join[stableSets[DeleteCases[u,w],Q],Prepend[#,w]&/@stableSets[DeleteCases[u,r_/;r===w||Q[r,w]||Q[w,r]],Q]]]]; %t A306419 Table[Length[stableSets[Complement[Subsets[Range[n],{2}],Sort/@Partition[Range[n],2,1,1]],Intersection[#1,#2]!={}&]],{n,0,10}] %t A306419 (* Second program: *) %t A306419 CompoundExpression[ %t A306419 b[n_] := I^(1 - n) 2^((n - 1)/2) HypergeometricU[(1 - n)/2, 3/2, -1/2], %t A306419 Join[{1, 1, 1}, Table[Sum[(-1)^k b[n - 2 k] n (n - 1 - k)!/(k! (n - 2 k)!), {k, 0, n/2}], {n, 3, 20}]] %t A306419 ] (* _Eric W. Weisstein_, Sep 02 2025 *) %o A306419 (PARI) \\ here b(n) is A000085(n) %o A306419 b(n) = {sum(k=0, n\2, n!/((n-2*k)!*2^k*k!))} %o A306419 a(n) = {if(n < 3, n >= 0, sum(k=0, n\2, (-1)^k*b(n-2*k)*n*(n-1-k)!/(k!*(n-2*k)!)))} \\ _Andrew Howroyd_, Aug 30 2019 %Y A306419 Cf. A000085, A000110, A000296, A001006, A001610, A003436 (no singletons), A034807, A170941 (linear case), A278990 (linear case with no singletons), A306417. %K A306419 nonn,changed %O A306419 0,5 %A A306419 _Gus Wiseman_, Feb 14 2019 %E A306419 Terms a(16) and beyond from _Andrew Howroyd_, Aug 30 2019