A306421 End squares for a trapped knight moving on a spirally numbered 2D grid where each square can be visited n times.
2084, 124561, 1756923, 21375782, 48176535, 128322490, 196727321, 230310289, 606217402, 2856313870, 244655558, 659075420, 586292888, 1646774611, 1018215514, 719687377, 564513339, 2779028614, 298995630, 1641747842, 414061107, 1467655587, 584309414, 1584716050
Offset: 1
Keywords
Examples
For n = 1, the knight becomes trapped at square 2084 (see A316667). The following table gives the corresponding values for n = 1 through 35: . | Square at which | Number of steps | the knight is | before the n | trapped | knight is trapped ---+-----------------+-------------- 1 | 2084 | 2016 (A316667) 2 | 124561 | 244273 3 | 1756923 | 4737265 4 | 21375782 | 98374180 5 | 48176535 | 258063291 6 | 128322490 | 836943142 7 | 196727321 | 1531051657 8 | 230310289 | 1897092533 9 | 606217402 | 5253106114 10 | 2856313870 | 27296872250 11 | 244655558 | 2772304666 12 | 659075420 | 8437814958 13 | 586292888 | 7875951360 14 | 1646774611 | 24511621133 15 | 1018215514 | 15493169264 16 | 719687377 | 11643899003 17 | 564513339 | 9593491769 18 | 2779028614 | 49835086546 19 | 298995630 | 5734502340 20 | 1641747842 | 33370972720 21 | 414061107 | 8844741817 22 | 1467655587 | 32843399937 23 | 584309414 | 13583967470 24 | 1584716050 | 37945957450 25 | 2544445470 | 62083869640 26 | 4796115990 | 125967045044 27 | 1881606731 | 51291895045 28 | 1321212795 | 37635024035 29 | 6693611092 | 196994700434 30 | 687619472 | 19985943874 31 | 1495794139 | 45392651369 32 | 6677258413 | 213836002227 33 | 6451059544 | 219770103702 34 | 7958333435 | 277128625469 35 | 13924943879 | 485324576539
Links
- Scott R. Shannon, Simplified Java code for producing the series
- Scott R. Shannon, Visited positions for n=3. For clarity only the visited positions are shown. Blue=3 visits, Green=2 visits, White=1 visit. Red is the final square (near top right corner). Note that the internal positions are all visited the maximum 3 times, and that the overall shape becomes an 'indented square' -- this pattern becomes more pronounced as n increases. Likewise the maximum visited x and y distances relative to the central square approach equality as n increases e.g. for n=35 both the maximum x and y visited distances are 59855.
- N. J. A. Sloane and Brady Haran, The Trapped Knight, Numberphile video (2019)
Comments