This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A306427 #12 Oct 13 2019 18:05:18 %S A306427 28,84,120,240,360,252,210,660,1008,1848,630,1320,420,2310,840,4830, %T A306427 1680,3360,5880,11700,1980,4200,1260,9660,3960,3780,2520,6930,4620, %U A306427 8190,6300,7560,5040,18900,19320,5460,23760,7140,39600,15120,27300,12600,59220,45360 %N A306427 Least integer m such that there are exactly n quadruples of distinct divisors (d_i, d_j, d_k, d_l) among the divisors of m having the property d_i * d_j - d_k * d_l = 1, for some i, j, k, l. %C A306427 We observe that a(n) == 0 (mod 6) for n > 1, and a(n) == 0 (mod 30) for n > 10. %C A306427 Conjecture: for each integer q > 1, there exists a subsequence E(q) of {a(n)} such that q*E(q) is also a subsequence of {a(n)}. %C A306427 The following table gives the first 10 subsequences E(q). %C A306427 +----+--------------------------------------------+ %C A306427 | q | E(q) such that q*E(q) is a subsequence | %C A306427 +----+--------------------------------------------+ %C A306427 | 2 | {120, 210, 420, 630, 660, 840, 1260, ...} | %C A306427 | 3 | {28, 84, 120, 210, 420, 660, 840, ...} | %C A306427 | 4 | {210, 252, 420, 630, 840, 1260, 3780, ...} | %C A306427 | 5 | {84, 252, 840, 1008, 1260, 2520, ...} | %C A306427 | 6 | {210, 420, 630, 660, 840, 1260, 2520, ...} | %C A306427 | 7 | {120, 240, 360, 660, 840, ...} | %C A306427 | 8 | {210, 420, 630, ...} | %C A306427 | 9 | {28, 420, 840, 1680, 5040, ...} | %C A306427 | 10 | {84, 252, 420, 630, 1260, 3960, ...} | %C A306427 +----+--------------------------------------------+ %e A306427 a(7) = 210 because the divisors of 210 are {1, 2, 3, 5, 6, 7, 10, 14, 15, 21, 30, 35, 42, 70, 105, 210} with seven following quadruples (1, 7, 2, 3), (1, 15, 2, 7), (1, 21, 2, 10), (2, 3, 1, 5), (3, 5, 1, 14), (3, 5, 2, 7) and (3, 7, 2, 10). %p A306427 with(numtheory):nn:=1000: %p A306427 for n from 1 to nn do: %p A306427 ii:=0:it:=0: %p A306427 for k from 1 to 10^5 while(ii=0) do: %p A306427 d:=divisors(k):n0:=nops(d):it:=0: %p A306427 for a from 1 to n0-1 do: %p A306427 for b from a+1 to n0 do: %p A306427 lst1:={d[a]} union {d[b]}:lst:= d minus lst1:n1:=nops(lst): %p A306427 for i from 1 to n1-1 do: %p A306427 for j from i+1 to n1 do: %p A306427 if d[a]*d[b]-lst[i]*lst[j]=1 %p A306427 then %p A306427 it:=it+1: %p A306427 else fi: %p A306427 od: %p A306427 od: %p A306427 od: %p A306427 od: %p A306427 if it=n then ii:=1:printf (`%d %d \n`,n,k): %p A306427 else fi: %p A306427 od: %p A306427 od: %Y A306427 Cf. A000005, A027750, A080257. %K A306427 nonn %O A306427 1,1 %A A306427 _Michel Lagneau_, Feb 14 2019