This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A306437 #19 Feb 16 2019 18:52:15 %S A306437 1,1,1,1,0,1,1,2,0,1,1,0,0,0,1,1,5,3,0,0,1,1,0,0,0,0,0,1,1,14,0,4,0,0, %T A306437 0,1,1,0,12,0,0,0,0,0,1,1,42,0,0,5,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,1,1, %U A306437 132,55,22,0,6,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,1,1,429,0,0,0,0,7,0,0,0,0,0,0,1 %N A306437 Regular triangle read by rows where T(n,k) is the number of non-crossing set partitions of {1, ..., n} in which all blocks have size k. %H A306437 Germain Kreweras, <a href="https://doi.org/10.1016/0012-365X(72)90041-6">Sur les partitions non croisées d'un cycle</a>, Discrete Math. 1 333-350 (1972). %H A306437 Wikipedia, <a href="https://en.wikipedia.org/wiki/Noncrossing_partition">Noncrossing partition</a>. %F A306437 If d|n, then T(n, d) = binomial(n, n/d)/(n - n/d + 1); otherwise T(n, k) = 0 [Theorem 1 of Kreweras]. %e A306437 Triangle begins: %e A306437 1 %e A306437 1 1 %e A306437 1 0 1 %e A306437 1 2 0 1 %e A306437 1 0 0 0 1 %e A306437 1 5 3 0 0 1 %e A306437 1 0 0 0 0 0 1 %e A306437 1 14 0 4 0 0 0 1 %e A306437 1 0 12 0 0 0 0 0 1 %e A306437 1 42 0 0 5 0 0 0 0 1 %e A306437 1 0 0 0 0 0 0 0 0 0 1 %e A306437 1 132 55 22 0 6 0 0 0 0 0 1 %e A306437 Row 6 counts the following non-crossing set partitions (empty columns not shown): %e A306437 {{1}{2}{3}{4}{5}{6}} {{12}{34}{56}} {{123}{456}} {{123456}} %e A306437 {{12}{36}{45}} {{126}{345}} %e A306437 {{14}{23}{56}} {{156}{234}} %e A306437 {{16}{23}{45}} %e A306437 {{16}{25}{34}} %p A306437 T:= (n, k)-> `if`(irem(n, k)=0, binomial(n, n/k)/(n-n/k+1), 0): %p A306437 seq(seq(T(n,k), k=1..n), n=1..14); # _Alois P. Heinz_, Feb 16 2019 %t A306437 Table[Table[If[Divisible[n,d],d/n*Binomial[n,n/d-1],0],{d,n}],{n,15}] %Y A306437 Row sums are A194560. Column k=2 is A126120. Trisection of column k=3 is A001764. %Y A306437 Cf. A000108, A000110, A000296, A001006, A001263, A001610, A016098, A038041, A061095, A125181, A134264. %K A306437 nonn,tabl %O A306437 1,8 %A A306437 _Gus Wiseman_, Feb 15 2019