A306442 Greatest integer N such that the number of base-n-zero containing numbers [<= N] <= the number of base-n-zerofree numbers [<= N].
3, 27, 131, 679, 7809, 34211, 274511, 4793487, 20327615, 222222219, 5187484917, 31896823991, 298693399003, 8722140365427, 70433726283479, 600479950316063, 21047228319925113, 252325338960485915, 3284805263774079161, 68985263157894736839
Offset: 2
Examples
a(2) = 3, since numOfZeroNum_2(3) [= the number of zero numbers <= 3, in base 2] is less than or equal to numOfZerofreeNum_2(3) [the number of zerofree numbers <= 3, in base 2], i.e., numOfZeroNum_2(3) = 2 <= 2 = numOfZerofreeNum_2(3), but numOfZeroNum_2(k) > numOfZerofreeNum_2(k) for k > 3. Hint: the zero numbers <= 3 in base 2 are 0 = 0_2 and 2 = 10_2, the zerofree numbers <= 3 in base 2 are 1 = 1_2 and 3 = 11_2. a(3) = 27, since numOfZeroNum_3(27) = 14 <= 14 = numOfZerofreeNum_3(27) but numOfZeroNum_3(k) > numOfZerofreeNum_3(k) for k > 27. Hint: the zero numbers <= 27 in base 3 are 0_3, 10_3, 20_3, 100_3, 101_3, 102_3, 110_3 120_3, 200_3, 201_3, 202_3, 210_3, 220_3 and 1000_3 = 27, the zerofree numbers <= 27 in base 3 are 1_3, 2_3, 11_3, 12_3, 21_3, 22_3, 111_3, 112_3, 121_3, 122_3, 211_3, 212_3, 221_3 and 222_3 = 26.
Links
- Hieronymus Fischer, Table of n, a(n) for n = 2..100
Formula
With numOfZeroNum_n(k) [= the number of base-n-zero containing numbers <= k] and numOfZerofreeNum_n(k) [the number of base-n-zerofree numbers <= k] and d := log(n-1)/log(n):
a(n) = max(k | numOfZeroNum_n(k) <= numOfZerofreeNum_n(k)).
Because of d = d(n) < 1, numOfZeroNum_n(k) = k*(1 + O(k^(d-1)), numOfZerofreeNum _n(k) = O(k^d) and numOfZeroNum_n(1) = 1 = numOfZerofreeNum_n(1) this maximum always exists (for n > 2). This is also true for the case n = 2, since numOfZeroNum_2(k) = k*(1 + O(log(k)/k)) and numOfZerofreeNum_2(k) = O(log(k)).
a(n) = max(k > 1 | numOfZeroNum_n(k) = (n + 1)/2).
a(n) = max(k > 1 | numOfZerofreeNum _n(k) = (n + 1)/2).
Estimate of the n-th term (n > 2):
a(n) < (2*(n-1)/(n-2))^(1/(1-d)) - 1,
where d := log(n-1)/log(n).
Also, but less accurate,
a(n) < (2*(n-1)/(n-2))^((n-1/2)*log(n)), n > 2,
a(n) < n*2^(n*log(n)), n > 1.
Asymptotic behavior:
a(n) = O(n*2^((n-1/2)*log(n))).
Lower and upper limits:
lim sup a(n)/(n*2^((n-1/2)*log(n))) = 1, for n --> infinity.
lim inf a(n)/(log(n)*2^((n-1/2)*log(n)) = e, for n --> infinity.
Comments