A306452 Pseudoprimes to base 3 that are not squarefree, including the non-coprime pseudoprimes.
121, 726, 3751, 4961, 7381, 11011, 29161, 32791, 142901, 228811, 239701, 341341, 551881, 566401, 595441, 671671, 784201, 856801, 1016521, 1053426, 1237951, 1335961, 1433971, 1804231, 1916761, 2000251, 2254351, 2446741, 2817001, 2983981, 3078361, 3307051, 3562361
Offset: 1
Keywords
Examples
121 is a term because 3^120 == (3^5)^24 == 1 (mod 121) and 121 = 11^2. Although 3^725 = 243 rather than 1 mod 726, we see that nevertheless 3^726 = 3 mod 726, and since 726 = 2 * 3 * 11^2, 726 is in the sequence. - _Alonso del Arte_, Mar 16 2019
Links
- Amiram Eldar, Table of n, a(n) for n = 1..1000
Programs
-
Mathematica
Select[Range[5000], PowerMod[3, #, #] == 3 && MoebiusMu[#] == 0 &] (* Alonso del Arte, Mar 16 2019 *)
-
PARI
forcomposite(n=1, 10^7, if(Mod(3, n)^n==3 && !issquarefree(n), print1(n, ", ")))
Comments