A306462 Number of ways to write n as C(2w,2) + C(x+2,3) + C(y+3,4) + C(z+4,5), where C(n,k) denotes the binomial coefficient n!/(k!*(n-k)!), w is a positive integer and x,y,z are nonnegative integers.
1, 3, 3, 1, 1, 4, 7, 6, 2, 2, 6, 8, 5, 1, 2, 9, 11, 5, 1, 4, 9, 12, 7, 2, 4, 10, 12, 7, 4, 6, 10, 11, 6, 5, 5, 10, 15, 8, 4, 7, 11, 14, 9, 4, 5, 11, 14, 6, 6, 10, 15, 12, 5, 7, 8, 11, 14, 7, 5, 6, 11, 14, 12, 11, 6, 11, 15, 12, 7, 9, 18, 21, 12, 5, 5, 15, 19, 11, 3, 5
Offset: 1
Keywords
Examples
a(1) = 1 with 1 = C(2,2) + C(2,3) + C(3,4) + C(4,5). a(4) = 1 with 4 = C(2,2) + C(3,3) + C(4,4) + C(5,5). a(5) = 1 with 5 = C(2,2) + C(4,3) + C(3,4) + C(4,5). a(14) = 1 with 14 = C(4,2) + C(3,3) + C(4,4) + C(6,5). a(19) = 1 with 19 = C(6,2) + C(4,3) + C(3,4) + C(4,5).
Links
- Zhi-Wei Sun, Table of n, a(n) for n = 1..10000
Crossrefs
Programs
-
Mathematica
f[m_,n_]:=f[m,n]=Binomial[m+n-1,m]; HQ[n_]:=HQ[n]=IntegerQ[Sqrt[8n+1]]&&Mod[Sqrt[8n+1],4]==3; tab={};Do[r=0;Do[If[f[5,z]>=n,Goto[cc]];Do[If[f[4,y]>=n-f[5,z],Goto[bb]];Do[If[f[3,x]>=n-f[5,z]-f[4,y],Goto[aa]];If[HQ[n-f[5,z]-f[4,y]-f[3,x]],r=r+1],{x,0,n-1-f[5,z]-f[4,y]}];Label[aa],{y,0,n-1-f[5,z]}];Label[bb],{z,0,n-1}];Label[cc];tab=Append[tab,r],{n,1,80}];Print[tab]
Comments