This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A306465 #17 Feb 19 2019 10:34:04 %S A306465 1,2,3,10,4,11,5,100,6,101,7,110,8,111,9,1000,12,13,20,14,21,22,30,23, %T A306465 102,24,112,31,32,103,33,120,40,121,41,200,34,201,42,202,43,1001,15, %U A306465 1010,16,1011,17,1100,18,1101,25,1110,26,1111,27,10000,19,10001,28 %N A306465 Lexicographically earliest sequence of distinct positive terms such that the product of any two consecutive terms can be computed without carry by long multiplication in base 10. %C A306465 This sequence is the variant of A266195 in base 10. %C A306465 This sequence is a permutation of the natural numbers, with inverse A306466. Proof: %C A306465 - we can always extend the sequence with a power of ten not yet in the sequence, hence the sequence is well defined and infinite, %C A306465 - for any k > 0, 10^(k-1) is the first k-digit number appearing in the sequence, %C A306465 - all powers of ten appear in the sequence, in increasing order, %C A306465 - a power of ten is always followed by the least number unused so far, %C A306465 hence every number eventually appears. QED %H A306465 Rémy Sigrist, <a href="/A306465/b306465.txt">Table of n, a(n) for n = 1..10000</a> %H A306465 Rémy Sigrist, <a href="/A306465/a306465.gp.txt">PARI program for A306465</a> %H A306465 Rémy Sigrist, <a href="/A306465/a306465.png">Colored logarithmic scatterplot of the sequence for n = 1..200000</a> (where the color is function of A054055(a(n))) %H A306465 <a href="/index/Per#IntegerPermutation">Index entries for sequences that are permutations of the natural numbers</a> %F A306465 A007953(a(n) * a(n+1)) = A007953(a(n)) * A007953(a(n+1)). %F A306465 A054055(a(n)) * A054055(a(n+1)) <= 9. %e A306465 The first terms, alongside their digital sum and the digital sum of the product with the next term, are: %e A306465 n a(n) ds(a(n)) ds(a(n)*a(n+1)) %e A306465 -- ---- -------- --------------- %e A306465 1 1 1 2 %e A306465 2 2 2 6 %e A306465 3 3 3 3 %e A306465 4 10 1 4 %e A306465 5 4 4 8 %e A306465 6 11 2 10 %e A306465 7 5 5 5 %e A306465 8 100 1 6 %e A306465 9 6 6 12 %e A306465 10 101 2 14 %e A306465 11 7 7 14 %e A306465 12 110 2 16 %e A306465 13 8 8 24 %e A306465 14 111 3 27 %e A306465 15 9 9 9 %e A306465 16 1000 1 3 %e A306465 17 12 3 12 %o A306465 (PARI) See Links section. %Y A306465 Cf. A007953, A054055, A266195, A306466 (inverse). %K A306465 nonn,base %O A306465 1,2 %A A306465 _Rémy Sigrist_, Feb 17 2019