cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A306465 Lexicographically earliest sequence of distinct positive terms such that the product of any two consecutive terms can be computed without carry by long multiplication in base 10.

This page as a plain text file.
%I A306465 #17 Feb 19 2019 10:34:04
%S A306465 1,2,3,10,4,11,5,100,6,101,7,110,8,111,9,1000,12,13,20,14,21,22,30,23,
%T A306465 102,24,112,31,32,103,33,120,40,121,41,200,34,201,42,202,43,1001,15,
%U A306465 1010,16,1011,17,1100,18,1101,25,1110,26,1111,27,10000,19,10001,28
%N A306465 Lexicographically earliest sequence of distinct positive terms such that the product of any two consecutive terms can be computed without carry by long multiplication in base 10.
%C A306465 This sequence is the variant of A266195 in base 10.
%C A306465 This sequence is a permutation of the natural numbers, with inverse A306466. Proof:
%C A306465 - we can always extend the sequence with a power of ten not yet in the sequence, hence the sequence is well defined and infinite,
%C A306465 - for any k > 0, 10^(k-1) is the first k-digit number appearing in the sequence,
%C A306465 - all powers of ten appear in the sequence, in increasing order,
%C A306465 - a power of ten is always followed by the least number unused so far,
%C A306465 hence every number eventually appears. QED
%H A306465 Rémy Sigrist, <a href="/A306465/b306465.txt">Table of n, a(n) for n = 1..10000</a>
%H A306465 Rémy Sigrist, <a href="/A306465/a306465.gp.txt">PARI program for A306465</a>
%H A306465 Rémy Sigrist, <a href="/A306465/a306465.png">Colored logarithmic scatterplot of the sequence for n = 1..200000</a> (where the color is function of A054055(a(n)))
%H A306465 <a href="/index/Per#IntegerPermutation">Index entries for sequences that are permutations of the natural numbers</a>
%F A306465 A007953(a(n) * a(n+1)) = A007953(a(n)) * A007953(a(n+1)).
%F A306465 A054055(a(n)) * A054055(a(n+1)) <= 9.
%e A306465 The first terms, alongside their digital sum and the digital sum of the product with the next term, are:
%e A306465   n   a(n)  ds(a(n))  ds(a(n)*a(n+1))
%e A306465   --  ----  --------  ---------------
%e A306465    1     1         1                2
%e A306465    2     2         2                6
%e A306465    3     3         3                3
%e A306465    4    10         1                4
%e A306465    5     4         4                8
%e A306465    6    11         2               10
%e A306465    7     5         5                5
%e A306465    8   100         1                6
%e A306465    9     6         6               12
%e A306465   10   101         2               14
%e A306465   11     7         7               14
%e A306465   12   110         2               16
%e A306465   13     8         8               24
%e A306465   14   111         3               27
%e A306465   15     9         9                9
%e A306465   16  1000         1                3
%e A306465   17    12         3               12
%o A306465 (PARI) See Links section.
%Y A306465 Cf. A007953, A054055, A266195, A306466 (inverse).
%K A306465 nonn,base
%O A306465 1,2
%A A306465 _Rémy Sigrist_, Feb 17 2019