A309898 For each b = 1, 2, 3, ... numbers k = 1, 2, 3, ... are inserted into the blanks within the sequence along with k * b blanks, skipping existing terms in the sequence.
1, 1, 2, 1, 1, 3, 2, 1, 1, 4, 2, 1, 3, 1, 5, 2, 1, 1, 2, 3, 6, 4, 1, 1, 2, 1, 1, 7, 3, 2, 1, 5, 1, 4, 2, 8, 1, 3, 1, 2, 1, 1, 2, 6, 9, 3, 4, 1, 1, 5, 2, 1, 1, 3, 10, 2, 1, 1, 7, 4, 2, 1, 3, 1, 2, 11, 1, 5, 6, 1, 2, 3, 4, 1, 8, 1, 2, 12, 1, 1, 3, 2, 1, 1, 4, 5, 2, 1, 3, 7, 13
Offset: 1
Examples
The first 21 terms are constructed as follows: 1 _ 2 _ _ 3 _ _ _ 4 _ _ _ _ 5 _ _ _ _ _ . 1 _ _ 2 _ _ _ _ 3 _ _ _ _ _ _ . 1 _ _ _ 2 _ _ _ _ _ _ 3 . 1 _ _ _ _ 2 _ _ _ . 1 _ _ _ _ _ 2 . 1 _ _ _ _ . 1 _ _ _ . 1 _ _ . 1 _ . 1 . 1 1 2 1 1 3 2 1 1 4 2 1 3 1 5 2 1 1 2 3 .
Links
- Seiichi Manyama, Table of n, a(n) for n = 1..10000
Programs
-
Python
seq = [] b = 2 for n in range(1, 100): seq += [n] + [-1] * n while -1 in seq: i = seq.index(-1) seq[i] = 1 k = 2 blanks = b for s in range(i + 1, len(seq)): if seq[s] == -1: blanks -= 1 if blanks < 0: seq[s] = k blanks = k * b k += 1 b += 1 print(seq)
Comments