cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A306471 Number of ways to write n as C(2w+1,2) + C(x+2,3) + C(y+3,4) + C(z+4,5) with w,x,y,z nonnegative integers, where C(n,k) denotes the binomial coefficient n!/(k!*(n-k)!).

Original entry on oeis.org

1, 3, 3, 2, 4, 6, 5, 4, 4, 5, 7, 8, 6, 4, 5, 8, 8, 5, 4, 6, 7, 10, 10, 6, 6, 12, 13, 8, 7, 7, 6, 11, 9, 4, 3, 8, 16, 12, 8, 9, 9, 13, 14, 10, 7, 9, 18, 12, 6, 5, 4, 11, 10, 4, 2, 5, 19, 21, 11, 9, 13, 20, 16, 9, 6, 8, 17, 17, 4, 2, 9, 20, 17, 6, 9, 9, 15, 23, 14, 9, 15
Offset: 0

Views

Author

Zhi-Wei Sun, Feb 17 2019

Keywords

Comments

Conjecture 1: a(n) > 1 for all n > 0.
We have verified a(n) > 0 for all n = 0..5*10^6.
Conjecture 2: For each r = 0, 1, any positive integer can be written as w^2 + C(x,3) + C(y,4) + C(z,5), where w,x,y,z are nonnegative integers with w - r even.
See also A306462 and A306477 for similar conjectures.

Examples

			a(0) = 1 with 0 = C(1,2) + C(2,3) + C(3,4) + C(4,5).
a(3) = 2 with 3 = C(3,2) + C(2,3) + C(3,4) + C(4,5) = C(1,2) + C(3,3) + C(4,4) + C(5,5).
a(54) = 2 with 54 = C(3,2) + C(7,3) + C(6,4) + C(5,5) = C(3,2) + C(5,3) + C(7,4) + C(6,5).
a(69) = 1 with 69 = C(3,2) + C(5,3) + C(7,4) + C(7,5) = C(3,2) + C(5,3) + C(3,4) + C(8,5).
		

Crossrefs

Programs

  • Mathematica
    f[m_,n_]:=f[m,n]=Binomial[m+n-1,m];
    HQ[n_]:=HQ[n]=IntegerQ[Sqrt[8n+1]]&&Mod[Sqrt[8n+1],4]==1;
    tab={};Do[r=0;Do[If[f[5,z]>n,Goto[cc]];Do[If[f[4,y]>n-f[5,z],Goto[bb]];Do[If[f[3,x]>n-f[5,z]-f[4,y],Goto[aa]];If[HQ[n-f[5,z]-f[4,y]-f[3,x]],r=r+1],{x,0,n-f[5,z]-f[4,y]}];Label[aa],{y,0,n-f[5,z]}];Label[bb],{z,0,n}];Label[cc];tab=Append[tab,r],{n,0,80}];Print[tab]