cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A306474 Composite numbers that are anagrams of the concatenation of their prime factors.

This page as a plain text file.
%I A306474 #15 May 20 2020 16:28:11
%S A306474 735,1255,3792,7236,11913,12955,13175,17276,17482,19075,19276,23535,
%T A306474 25105,32104,34112,37359,42175,100255,101299,104392,105295,107329,
%U A306474 117067,117873,121325,121904,121932,123544,123678,124483,127417,129595,131832,132565,139925
%N A306474 Composite numbers that are anagrams of the concatenation of their prime factors.
%C A306474 The sequence contains two subsequences:
%C A306474 Subsequence 1: numbers with distinct digits. This finite subsequence begins with the numbers 735, 3792, 7236, 17482, 19075, 19276, 32104, ...
%C A306474 Subsequence 2: numbers with non-distinct digits. This subsequence begins with the numbers 1255, 11913, 12955, 13175, 17276, 23535, ...
%H A306474 Robert Israel, <a href="/A306474/b306474.txt">Table of n, a(n) for n = 1..500</a>
%e A306474 3792 is in the sequence because the concatenation of the prime distinct divisors {2, 3, 79} is 2379, anagram of 3792.
%p A306474 with(numtheory):
%p A306474 for n from 1 to 140000 do:
%p A306474 if type(n,prime)=false
%p A306474   then
%p A306474   x:=factorset(n):n1:=nops(x): s:=0:s0:=0:
%p A306474     for i from n1 by -1 to 1 do:
%p A306474      a:=x[i]:b:=length(a):s:=s+a*10^s0:s0:=s0+b:
%p A306474     od:
%p A306474       if sort(convert(n, base, 10)) = sort(convert(s, base, 10))
%p A306474        then
%p A306474         printf(`%d, `, n):
%p A306474         else
%p A306474       fi:fi:
%p A306474      od:
%t A306474 Select[Range[2,140000],If [!PrimeQ[#],Sort@IntegerDigits@#==Sort[Join@@IntegerDigits[First/@FactorInteger[#]]]]&]
%Y A306474 Cf. A023086, A209799.
%Y A306474 A121342 is a subsequence.
%K A306474 nonn,base
%O A306474 1,1
%A A306474 _Michel Lagneau_, Feb 18 2019