This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A306474 #15 May 20 2020 16:28:11 %S A306474 735,1255,3792,7236,11913,12955,13175,17276,17482,19075,19276,23535, %T A306474 25105,32104,34112,37359,42175,100255,101299,104392,105295,107329, %U A306474 117067,117873,121325,121904,121932,123544,123678,124483,127417,129595,131832,132565,139925 %N A306474 Composite numbers that are anagrams of the concatenation of their prime factors. %C A306474 The sequence contains two subsequences: %C A306474 Subsequence 1: numbers with distinct digits. This finite subsequence begins with the numbers 735, 3792, 7236, 17482, 19075, 19276, 32104, ... %C A306474 Subsequence 2: numbers with non-distinct digits. This subsequence begins with the numbers 1255, 11913, 12955, 13175, 17276, 23535, ... %H A306474 Robert Israel, <a href="/A306474/b306474.txt">Table of n, a(n) for n = 1..500</a> %e A306474 3792 is in the sequence because the concatenation of the prime distinct divisors {2, 3, 79} is 2379, anagram of 3792. %p A306474 with(numtheory): %p A306474 for n from 1 to 140000 do: %p A306474 if type(n,prime)=false %p A306474 then %p A306474 x:=factorset(n):n1:=nops(x): s:=0:s0:=0: %p A306474 for i from n1 by -1 to 1 do: %p A306474 a:=x[i]:b:=length(a):s:=s+a*10^s0:s0:=s0+b: %p A306474 od: %p A306474 if sort(convert(n, base, 10)) = sort(convert(s, base, 10)) %p A306474 then %p A306474 printf(`%d, `, n): %p A306474 else %p A306474 fi:fi: %p A306474 od: %t A306474 Select[Range[2,140000],If [!PrimeQ[#],Sort@IntegerDigits@#==Sort[Join@@IntegerDigits[First/@FactorInteger[#]]]]&] %Y A306474 Cf. A023086, A209799. %Y A306474 A121342 is a subsequence. %K A306474 nonn,base %O A306474 1,1 %A A306474 _Michel Lagneau_, Feb 18 2019