This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A306489 #7 Feb 21 2019 04:17:22 %S A306489 1,1,1,1,1,1,1,1,2,1,1,1,1,3,1,1,1,2,2,5,1,1,1,1,3,3,8,1,1,1,2,1,6,4, %T A306489 13,1,1,1,1,4,1,10,6,21,1,1,1,2,1,7,2,18,9,34,1,1,1,1,3,1,13,3,31,13, %U A306489 55,1,1,1,2,2,6,1,25,4,55,19,89,1,1,1,1,3,3,10,1,46,5,96,28,144,1 %N A306489 Square array A(n,k), n >= 0, k >= 1, read by antidiagonals, where column k is the expansion of 1/(1 - Sum_{d|k} x^d). %C A306489 A(n,k) is the number of compositions (ordered partitions) of n into divisors of k. %F A306489 G.f. of column k: 1/(1 - Sum_{d|k} x^d). %e A306489 Square array begins: %e A306489 1, 1, 1, 1, 1, 1, ... %e A306489 1, 1, 1, 1, 1, 1, ... %e A306489 1, 2, 1, 2, 1, 2, ... %e A306489 1, 3, 2, 3, 1, 4, ... %e A306489 1, 5, 3, 6, 1, 7, ... %e A306489 1, 8, 4, 10, 2, 13, ... %t A306489 Table[Function[k, SeriesCoefficient[1/(1 - Sum[x^d, {d, Divisors[k]}]), {x, 0, n}]][i - n + 1], {i, 0, 12}, {n, 0, i}] // Flatten %Y A306489 Columns k=1..7 give A000012, A000045 (for n > 0), A000930, A060945, A003520, A079958, A005709. %Y A306489 Cf. A100346, A214575. %K A306489 nonn,tabl %O A306489 0,9 %A A306489 _Ilya Gutkovskiy_, Feb 19 2019