A306500 a(n) is the smallest prime p such that Sum_{primes q <= p} Kronecker(-A003657(n),q) > 0, or 0 if no such prime exists.
608981813029, 26861, 2, 3, 5, 2, 11, 3, 2, 5, 2, 11, 2, 11, 53, 2, 13, 17, 2, 3, 5, 163, 3, 2, 2, 11, 5, 2, 31, 31, 2, 2, 3, 23, 2, 41, 3, 2, 13, 47, 2, 5, 19, 7, 11, 2, 191, 2, 3, 19, 2, 15073, 3, 2, 29, 5, 2, 41, 109, 2, 11, 2, 31, 59, 3, 2, 19, 2, 11, 53, 2, 1019, 137
Offset: 1
Keywords
Examples
Let D = -A003657(18) = -52, j(k) = Sum_{primes q <= prime(k)} Kronecker(D,q). For k = 1, Kronecker(-52,2) = 0, so j(1) = 0; For k = 2, Kronecker(-52,3) = -1, so j(2) = -1; For k = 3, Kronecker(-52,5) = -1, so j(3) = -2; For k = 4, Kronecker(-52,7) = +1, so j(4) = -1; For k = 5, Kronecker(-52,11) = +1, so j(5) = 0; For k = 6, Kronecker(-52,13) = 0, so j(6) = 0; For k = 7, Kronecker(-52,17) = +1, so j(7) = 1. The first time for j > 0 occurs at the prime 17, so a(18) = 17.
Links
- Jianing Song, Table of n, a(n) for n = 1..3043
- Wikipedia, Chebyshev's bias
Crossrefs
Programs
-
PARI
b(n) = my(i=0); forprime(p=2,oo,i+=kronecker(n,p); if(i>0, return(p))) print1(608981813029, ", "); for(n=4, 300, if(isfundamental(-n), print1(b(-n), ", ")))
Comments