A306501 Primes p such that 2, 3, 5, 7, ..., 37 are all quadratic nonresidues modulo p.
163, 74093, 92333, 170957, 222643, 225077, 253507, 268637, 292157, 328037, 360293, 517613, 524453, 530837, 613637, 641093, 679733, 781997, 847997, 852893, 979373, 991027, 1096493, 1110413, 1333963, 1398053, 1730357, 1821893, 2004917, 2055307, 2056147, 2079173
Offset: 1
Keywords
Links
- Robert Israel, Table of n, a(n) for n = 1..2694
Crossrefs
Cf. A191089.
Programs
-
Maple
N:= 3*10^6: # to get all terms <= N S:= {seq(8*i+3, i=1..(N-3)/8)} union {seq(8*i+5,i=1..(N-5)/8)}: for p in select(isprime, [$3..37]) do R:= select(t -> numtheory:-legendre(t,p) = 1, {$1..p-1}); if p mod 4 = 1 then S:= remove(t -> member(t mod p, R), S) else S:= select(t -> member(t mod p, R) = evalb(t mod 4 = 3), S) fi; od: sort(convert(select(isprime,S),list)); # Robert Israel, Mar 31 2019
-
PARI
forprime(p=2, 1e6, if(sum(k=1, 37, isprime(k)*kronecker(k, p))==-12, print1(p, ", ")))
Comments