This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A306508 #46 Dec 09 2021 01:00:23 %S A306508 210,462,570,1155,1302,1330,1365,1785,2210,2310,2730,3003,3410,3710, %T A306508 3990,4305,4515,4758,4810,5005,5187,5474,5610,5642,6006,6105,6118, %U A306508 6270,6510,6622,6630,7410,7770,8265,8385,8463,8645,9282,9471,9870,10010,10101,10230,10374,10545,10582 %N A306508 Squarefree numbers that have fully composite idempotent factorizations. %C A306508 Fully composite idempotent factorizations are bipartite factorizations n=p*q such that p and q are composite numbers with the property that for any b in Z_n, b^(k(p-1)(q-1)+1) is congruent to b mod n for any integer k >= 0. Idempotent factorizations have the property that p and q generate correctly functioning RSA keys, even if one or both are composite. %C A306508 2730 has more than one fully composite idempotent factorization (10*273, 21*130). It is the smallest positive integer with that property. 7770 and 8463 are similar. %H A306508 Barry Fagin, <a href="/A306508/b306508.txt">Table of n, a(n) for n = 1..63737</a> %H A306508 Barry Fagin, <a href="/A306508/a306508.txt"> All n < 2^27 and their fully composite idempotent factorizations</a> %H A306508 Barry Fagin, <a href="https://doi.org/10.3390/info10070232">Idempotent Factorizations of Square-Free Integers</a>, Information 2019, 10(7), 232. %H A306508 Barry Fagin, <a href="https://doi.org/10.3390/info12080305">Search Heuristics and Constructive Algorithms for Maximally Idempotent Integers</a>, Information (2021) Vol. 12, No. 8, 305. %e A306508 210=10*21, 462=22*21, 570=10*57, 1155=21*55, 1302=6*217, 1330=10*133, 1365=15*91 and 1785=21*85 are the fully composite idempotent factorizations for the first eight terms. %o A306508 (Python) %o A306508 for n in range(2,max_n): %o A306508 factor_list = numbthy.factor(n) %o A306508 numFactors = len(factor_list) %o A306508 if numFactors <= 3: %o A306508 continue %o A306508 if not bsflib.is_composite_and_square_free_with_list(n,factor_list): %o A306508 continue %o A306508 fciFactorizations = bsflib.fullyCompositeIdempotentFactorizations(n,factor_list) %o A306508 numFCIFs = len(fciFactorizations) %o A306508 if numFCIPs > 0: %o A306508 fcIdempotents += 1 %o A306508 print(n) %o A306508 (PARI) isokc(p, q, n) = (p != 1) && !isprime(p) && !isprime(q) && (frac((p-1)*(q-1)/lcm(znstar(n)[2])) == 0); %o A306508 isok(n) = {if (issquarefree(n) && omega(n) >= 3, my(d = divisors(n)); for (k=1, #d\2, if (isokc(d[k], n/d[k], n), return (1););););} \\ _Michel Marcus_, Feb 22 2019 %Y A306508 Cf. A115957, A138636, A002322. %Y A306508 Subsequence of A120944 (composite squarefree numbers). %Y A306508 Subsequence of A306330 (composite squarefree numbers with idempotent factorizations). %K A306508 nonn %O A306508 1,1 %A A306508 _Barry Fagin_, Feb 20 2019