cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A306513 The number of unordered pairs of coprime integers q and r such that phi(q) + phi(r) = 2n.

Original entry on oeis.org

1, 1, 5, 7, 12, 10, 19, 18, 20, 21, 35, 32, 39, 42, 38, 37, 48, 46, 45, 58, 64, 63, 69, 73, 58, 93, 71, 70, 81, 92, 72, 113, 96, 94, 90, 100, 79, 158, 120, 95, 131, 153, 84, 147, 129, 132, 126, 150, 92, 179, 157, 150, 149, 187, 92, 224, 177, 166, 173, 207, 124
Offset: 1

Views

Author

Robert G. Wilson v, Feb 20 2019

Keywords

Comments

Paul Erdős and Leo Moser conjectured that, for any even number 2n, there exist integers q and r such that phi(q) + phi(r) = 2n with gcd(q, r) = 1. Adding to this conjecture the requirement that q and r be prime yields the Goldbach Conjecture. The replacement of the requirement that q and r be prime with the relaxed requirement that they be coprime was done in an effort to solve the Goldbach Conjecture.

Examples

			a(1) = 1 with {q, r} = {1,2};
a(2) = 1 with {q, r} = {3,4};
a(3) = 5 because phi(q) + phi(r) = 6 for the pairs {q, r} = {3,5}, {3,8}, {3,10}, {4,5} & {5,6}; etc.
		

References

  • George E. Andrews, Number Theory, Chapter 6, Arithmetic Functions, Section 6-1, Combinatorial Study of Phi(n), pp. 75-82, Dover Publishing, NY, 1971.

Crossrefs

Programs

  • Mathematica
    f[n_] := Block[{c = 0, q = 1}, While[q < 12n, epq = EulerPhi[q]; r = 12n + 125; While[r > q, If[ GCD[q, r] == 1 && epq + EulerPhi[r] == 2 n, c++]; r--]; q++]; c]; Array[f, 61]