This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A306527 #24 Mar 24 2022 16:32:25 %S A306527 1,8,11,2,5,10,7,4,9,16,3,6,13,22,35,18,21,12,15,26,23,14,25,38,55,20, %T A306527 17,32,47,70,31,34,49,30,19,36,53,50,69,46,93,48,29,68,95,72,33,54,37, %U A306527 24,27,42,39,56,77,52,71,74,97,100,51,76,101 %N A306527 Squares visited by a knight moving on an open-rectangle-numbered board and moving to the lowest available unvisited square at each step. %C A306527 The half-infinite board is numbered from square 1 as follows: %C A306527 . %C A306527 | | | | | | | | %C A306527 --+-------+-------+-------+-------+-------+-------+-------+-- %C A306527 | | | | | | | | %C A306527 | 25 . . .24 . . .23 . . .22 . . .21 . . .20 . . .19 | %C A306527 | . | | | | | | . | %C A306527 --+---.---+-------+-------+-------+-------+-------+---.---+-- %C A306527 | . | | | | | | . | %C A306527 | 26 | 13 . . .12 . . .11 . . .10 . . . 9 | 18 | %C A306527 | . | . | | | | . | . | %C A306527 --+---.---+---.---+-------+-------+-------+---.---+---.---+-- %C A306527 | . | . | | | | . | . | %C A306527 | 27 | 14 | 5 . . . 4 . . . 3 | 8 | 17 | %C A306527 | . | . | . | | . | . | . | %C A306527 --+---.---+---.---+---.---+-------+---.---+---.---+---.---+-- %C A306527 | . | . | . | | . | . | . | %C A306527 | 28 | 15 | 6 | 1 | 2 | 7 | 16 | %C A306527 | | | | | | | | %C A306527 --+-------+-------+-------+-------+-------+-------+-------+-- %C A306527 . %C A306527 The knight begins at square 1. This is a finite sequence: after 326 steps square 562 is reached after which all squares within one knight move have been visited. %H A306527 Scott R. Shannon, <a href="/A306527/b306527.txt">Table of n, a(n) for n = 1..326</a> %H A306527 Scott R. Shannon, <a href="/A306527/a306527.png">Image showing the knight path</a>. The green dot is the starting square 1, the red dot is the end square 562. 4 Blue dots have been added around the final square to show all available positions have been visited. %H A306527 Scott R. Shannon, <a href="/A306527/a306527.java.txt">Simplified Java code for the sequence</a> %H A306527 N. J. A. Sloane and Brady Haran, <a href="https://www.youtube.com/watch?v=RGQe8waGJ4w">The Trapped Knight</a>, Numberphile video (2019) %Y A306527 Cf. A316667, A316588. %K A306527 nonn,fini,full %O A306527 1,2 %A A306527 _Scott R. Shannon_, Feb 21 2019