A306537 The least prime q such that Kronecker(D/q) = 1 where D runs through all positive fundamental discriminants (A003658).
2, 11, 7, 11, 3, 2, 5, 5, 3, 5, 2, 3, 3, 2, 5, 7, 5, 2, 7, 3, 2, 5, 2, 3, 13, 3, 3, 2, 7, 7, 2, 5, 5, 2, 3, 2, 7, 3, 2, 3, 3, 2, 13, 5, 2, 5, 11, 5, 3, 2, 7, 11, 3, 13, 2, 3, 3, 2, 11, 2, 7, 2, 5, 3, 2, 11, 2, 3, 5, 3, 3, 2, 5, 13, 2, 13, 2, 3, 2, 5, 2, 3, 5, 2
Offset: 1
Keywords
Examples
Let K = Q[sqrt(635)] with D = 2540 = A003658(774), we have: 2 and 5 divides 2540, (2540/3) = (2540/7) = ... = (2540/37) = -1 and (2540/41) = +1, so 2 and 5 ramify in K, 3, 7, ..., 37 remain inert in K and 41 decomposes in K, so a(774) = 41.
Crossrefs
Programs
-
PARI
b(D)=forprime(p=2, oo, if(kronecker(D, p)>0, return(p))) for(n=1, 300, if(isfundamental(n), print1(b(n), ", ")))
Comments